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We present results of direct numerical simulation of heat transfer and droplet concen-
tration in turbulent flow of a mixture of dry air, water vapor, and water droplets in a
differentially heated channel. In particular, we study the effects of droplet collisions by
comparing results of simulations with and without droplet collision model for several
overall droplet volume fractions. The results show that droplet collisions have a large
influence on droplet concentration. Maximum local concentrations, which occur close
to the walls of the channel, are reduced by almost an order of magnitude for the case
with the highest overall volume fraction. In addition, the positive skewness of the local
volume fraction is reduced by a factor of two near the walls. These findings show the
importance of including four-way coupling, even in cases where the overall droplet
volume fraction is only on the order of 10−4 and the Stokes number in wall units is
only about 10. In spite of this large effect of droplet collisions on droplet concentration,
the effect on the overall heat transfer between the walls of the channel is not more
than approximately 17%. That the effect on the overall heat transfer is relatively small
can be explained by the lower heat exchange area between droplets and gas in the
near-wall areas, which results in a higher temperature difference between droplets and
surrounding gas. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4921492]

I. INTRODUCTION

Recently, it has been shown by means of numerical simulation that the presence of small,
heavy particles with high specific heat can significantly increase the heat transfer properties of a
differentially heated turbulent channel flow.1 This increase is caused by the temperature difference
between the particles and the continuous phase close to the wall, where the particle concentration
is higher than average due to turbophoresis. In a later paper,2 it has been shown that the increase
in heat transfer can be further augmented if the particles are replaced by droplets which can grow
and shrink by phase change when the continuous phase consists of a mixture of dry air and the
vapor of the dispersed phase. This further increase in heat transfer can be understood from the larger
temperature difference between the two phases caused by the enthalpy of evaporation, which cools
the droplets close to the hot wall where evaporation occurs, and heats the droplets close to the cold
wall, where condensation of the vapor occurs.

In both papers, the Euler-Lagrange formulation has been applied, where the continuous phase
is described by the Eulerian approach and a Lagrangian point-particle approach is used for each
droplet or particle.3 This approach is allowed if the particles are smaller than the smallest scales
present in the turbulent flow. For the continuous phase, a direct numerical simulation (DNS) has
been applied. In order to describe the temperature and vapor mass fraction in the continuous phase,
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apart from the Navier-Stokes equation also convection-diffusion equations for the temperature and
vapor mass fraction have been solved. It has been shown4 that for the test cases studied by Russo
et al.,2 a compressible and an incompressible formulation for the continuous phase yield very
similar results for most quantities of interest. For each droplet apart from the usual equations of
motion, equations for its temperature and its mass have been solved, which take into account the
convective heat transfer between the two phases, the enthalpy of evaporation when phase change
occurs, and the deviation from saturation. The equations have been closed by empirical correlations
for the drag force, Nusselt number, and Sherwood number for spherical particles.5

In all test cases considered in the paper by Russo et al.,2 the initial uniform volume fraction of
droplets is 2.2 × 10−4 or lower, while the droplet relaxation time is not much larger than the Kol-
mogorov time throughout the channel. The Stokes number in wall units, St+, is nearly equal to 10.
Therefore, the simulations are in the regime of two-way coupling according to the criteria proposed
by Elghobashi.3 This implies that the continuous phase influences the dispersed phase and vice
versa, but direct interaction between two droplets or particles has not been accounted for. However,
due to turbophoresis, during the simulation, the droplet concentration becomes non-uniform in the
wall-normal direction, reaching values more than a factor of 10 higher than the initial concentration
close to the wall. Moreover, the droplets are preferentially located in the low-speed streaks close
to the walls. Therefore, locally the droplet concentration may reach even higher values, which
might make the disregard of direct interaction between droplets, usually called four-way coupling,
questionable.

In this paper, the effect of droplet collisions on the properties of droplet-laden turbulent flow in
a differentially heated channel will be studied for the reference test cases considered by Russo et al.2

In particular, it will be shown how droplet collisions influence the droplet concentration and how
this affects the temperature profile of the continuous phase in the steady state.

Numerical simulations of particle-laden flow with two-way and four-way coupling have been
reported in a number of papers over the last 20 years. Compared to simulations of particle-laden
turbulent flow employing one-way and two-way coupling, simulations with four-way coupling
have initially been hampered by the lack of efficient collision detection algorithms. One of the
first studies that took into account collisions between finite-sized particles was by Sundaram and
Collins6 on particle collisions in isotropic turbulence. Compared to the brute-force collision detec-
tion algorithm that checks for collisions between all particle pairs, they divided the computational
domain into blocks and checked for collisions between particles in the same or a neighboring block.
Chen et al.7,8 were the first to perform DNS of droplet-laden channel flow with four-way coupling.
DNS and large-eddy simulation (LES) of gas-solid channel flow with four-way coupling have been
performed by Li et al.9 and by Yamamoto et al.10 Mass loads of the dispersed phase up to a value
of 30 in gas-solid turbulent pipe and channel flows have been studied by means of DNS by Vre-
man11 and by means of LES by Vreman et al.12 This literature shows that for small overall volume
fractions, on the order of 1 × 10−4, the mean particle concentration close to the wall decreases
significantly when particle collisions are taken into account for St+ = 192 in DNS of channel flow,9

for St+ = 27 in LES of channel flow,10 and for St+ = 85 in DNS of pipe flow.11 In the present work,
we also find large effects of collisions on particle concentration, while St+ is considerably lower
than in the references mentioned. This is relevant, since Elghobashi3 indicates that the boundary
between the two-way and four-way coupling regimes shifts toward smaller volume fractions for
particles with higher Stokes numbers. In addition, we investigate which impact a reduced mean
volume concentration at the wall by particle collisions has on the Nusselt number.

Apart from the collision detection method, the type of collision method plays an important role.
A hard-sphere collision model, including particle rotation, in which the collisions are treated in a
deterministic way has been developed by Hoomans et al.13 Such a model, either with or without
particle rotation, has been applied by various other authors.11,12,14,15 Other methods treat the particle
collisions in a stochastic way,16,17 but these methods are restricted to high particle number density or
almost homogeneous flows.

In this paper, droplet collisions will be treated in a deterministic way with a hard-sphere colli-
sion model, in which all droplet-pair collisions are detected. Since we consider small droplets, that
can be assumed spherical, and the mass density of the droplets is large compared to the mass density
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of the continuous phase, the droplet-laden flow we consider is in most respects very similar to
particle-laden flow. The most important difference is the mass transfer between the two phases by
means of evaporation of droplets and condensation of vapor, which results in a non-constant droplet
diameter. Unlike in the paper by Chen et al.,7 it will be assumed that droplets do not coalesce when
they collide, but perform a fully or non-fully elastic collision. For the small droplets considered in
this paper, the Weber number for two colliding droplets, based on their relative velocity and average
diameter, is sufficiently small that coalescence of two colliding droplets is unlikely.18–20 It will also
be assumed that a droplet bounces back if it collides with a wall, which is a valid assumption if the
wall is super-hydrophobic.21 The droplet-wall collisions will be assumed either elastic or inelastic.
In practice, restitution coefficients somewhat smaller than 1 have been observed.21

The present paper and the literature cited deal with dilute flows in which the volume fraction
of the dispersed flow is lower than approximately 0.01. Note, however, that the Euler-Lagrange
approach with deterministic particle collisions has also been applied to much denser flows (see the
review papers by van der Hoef et al.22 and Deen et al.23 and the references therein).

The organization of this paper is as follows. In Sec. II, the physical model applied in this work
will be presented along with the numerical method used to solve the set of equations. Section III
shows results for droplet concentration, Sec. IV for collision frequency, whereas Sec. V considers
the resulting temperature profile and its consequences for the heat transfer properties. Finally,
Sec. VI will present conclusions of this investigation.

II. PHYSICAL MODEL AND NUMERICAL METHODS

Since the physical model and numerical method are the same as those used by Russo et al.,2

only the most relevant parts will be recalled here. In Subsection II A, the model for the continuous
phase will be given, while in Subsection II B, the governing equations for the droplets and in
Subsection II C, the numerical methods will be specified. Finally, in Subsection II D, we will give a
short overview of the collision algorithm.

A. Continuous phase

The continuous phase is a mixture of dry air and water vapor. It is treated in an Eulerian way
and assumed to be incompressible. This implies that the mass densities of the two components,
ρa of dry air and ρv of water vapor, are allowed to vary in time and space, as long as their sum
is constant: ρa + ρv = ρg = const, where ρg is the mass density of the gas phase. Hence, the gas
satisfies the continuity equation for incompressible flow,

∇ · u = 0, (1)

where u is the velocity of the gas. Moreover, the gas momentum equation is modeled by the
Navier-Stokes equation for incompressible flow, supplemented with a model for the interaction
force between the two phases,

∂u
∂t
+ ω × u + ∇P = ν∆u +

F
ρg
+
Lu

ρg
, (2)

where ω = ∇ × u is the vorticity, P = p/ρg + 1
2 u2, ν is the kinematic viscosity of the gas, p the static

pressure, and F is the driving force necessary to maintain a constant total mass flow rate. Finally, Lu
describes the momentum exchange between the two phases that will be specified in Subsection II B.

The vapor mass density changes because of diffusion, convection, and mass transfer between
the two phases by evaporation and condensation,

∂ρv
∂t
+ ∇ · (ρvu) − ∇ · (D∇ρv) = Lv. (3)

The term Lv represents the mass transfer between water droplets and water vapor that will be
specified in Subsection II B. We assume that the diffusion coefficient D is constant in space and
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time, which is justified since the vapor concentration is much lower than the concentration of dry
air.5

The equation for the gas temperature, Tg , follows from conservation of energy. The contribution
of kinetic energy to the total energy is very small at the low velocities we consider in this paper, as
has been shown by Bukhvostova et al.4 Therefore, the gas temperature equation can be expressed as

(ρa cv,a + ρvcv, v)
(
∂Tg

∂t
+ ∇ ·

�
u Tg

�)
= kg∇2Tg + Lwd + Ldiff + L2way , (4)

where cv,a and cv, v are the specific heat at constant volume of dry air and water vapor, respectively,
and kg is the thermal conductivity. It is assumed that the heat diffusivity kg/ (ρa cv,a + ρvcv, v) in (4)
is constant, which is accurate for the small values of the vapor mass fraction considered here.24 The
dependence of kg on ρv is taken into account in the term Lwd, which also represents the transport of
energy due to diffusion of water vapor,

Lwd =


∂kg
∂ρv
+D

�
cp, v − cp,a

�
∇ρv · ∇Tg . (5)

The third term on the right-hand side of (4) stems from diffusion of vapor and is equal to2

Ldiff = (Ra − Rv)D(Tg − Tℓ0)∇2ρv, (6)

where Ra = cp,a − cv,a and Rv = cp, v − cv, v are the specific gas constants of dry air and vapor and
Tℓ0 is the reference temperature where the latent heat is evaluated. Finally, L2way represents the
contribution from the coupling between the two phases, which will be specified in Subsection II B.

B. Dispersed phase

The dispersed phase consists of water droplets, which are treated in a Lagrangian way, by
solving equations for the position, velocity, temperature, and mass of each individual droplet. Fur-
thermore, droplets are so small that a point particle approach is allowed. Droplets are so small that
it may be assumed that they are spherical in very good approximation. Even close to the walls of
the channel, where the shear rate of the flow is maximum, the typical value of the capillary number
is not larger than 10−5 and this leads to deformation parameters of the same order of magnitude.25

Since the mass density of a droplet is large compared to the mass density of the gas, the only
relevant force between the two phases is the drag force. Moreover, in most of the simulations
discussed in this paper, we do not take gravity into account in order to enable a comparison with the
results of Russo et al.2 without droplet collisions. However, in order to study the effect of gravity,
we performed one simulation with gravity in the opposite direction as the mean gas flow. Therefore,
the equation of motion of a droplet can be written as

dvi

dt
= (u (xi, t) − vi)

(
1 + 0.15 Re0.687

p

)
τp

+

(
1 −

ρg

ρl

)
g. (7)

Here, vi is the velocity of droplet i and τp the droplet relaxation time given by τp = ρld2
i/(18µg).

Moreover, Rep = |vi − u(xi, t)|di/ν is the droplet Reynolds number based on droplet diameter di

and relative velocity, ρl is the mass density of liquid water, and µg the dynamic viscosity of the gas.
The standard Schiller-Neumann drag correlation valid for droplet Reynolds numbers between 0 and
1000 is adopted.26 Finally, g denotes the acceleration of gravity. The position of droplet i, xi follows
from the solution of

d xi(t)
dt

= vi. (8)

The temperature of a droplet changes by two mechanisms. The enthalpy of evaporation leads
to a temperature change when a droplet evaporates or vapor condenses onto a droplet and there is
convective heat transfer between the two phases. Therefore, the droplet temperature equation can be
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written as

ρl cl V i
dTi

dt
= (hv − hl) dmi

dt
+ hmAi

�
Tg(xi, t) − Ti

�
, (9)

where cl is the specific heat capacity of liquid water, mi and Ti are the mass and temperature of
droplet i and hv, and hl are the specific enthalpy of liquid water and water vapor evaluated at the
temperature of the droplet. The convective heat transfer coefficient, hm is chosen according to the
correlation for forced convection around a sphere,5

hm di

kg
= 2 + 0.6 Re1/2

p Pr1/3, (10)

where Pr is the Prandtl number of the carrier gas.
For the mass transfer, we also follow Bird et al.5 and solve

dmi

dt
= − mi Sh

3 τp Sc
ln

(
1 − xv,δ

1 − xv,0

)
, (11)

where the Schmidt number Sc = µg/(ρgD), and xv,δ and xv,0 are the vapor mass fractions in the
surroundings of the droplet and at the surface of the droplet, respectively. The latter follows from
the condition of saturation, where we use Antoine’s law for the saturation pressure as a function of
temperature.27 The Sherwood number is given by5 Sh = 2 + 0.6Re1/2

p Sc1/3. All details of the model,
including the values of the physical properties, can be found in Russo et al.2

The two-way coupling terms in the governing equations for the gas phase can be found from
the requirements that they are only non-zero at the locations of a droplet and that the interaction be-
tween the two phases does not change total mass, momentum, and energy of the two-phase system.
The two-way coupling term in the Navier-Stokes equation for the gas phase (2) can therefore be
written as

Lu = −
N
i=1

d (mivi)
dt

δ (x − xi) = −
N
i=1

mi
dvi

dt
δ (x − xi) −

N
i=1

vi
dmi

dt
δ (x − xi) , (12)

where δ (x) is the Dirac Delta function. The two-way coupling term in water vapor equation (3) is
given by

Lv = −
N
i=1

dmi

dt
δ (x − xi) . (13)

Finally, the two-way coupling term in gas temperature equation (4) follows from conservation of
energy and using (9),

L2way = −
N
i=1

[cp, vTi + (cv,a − cv, v)Tg] dmi

dt
δ (x − xi) −

N
i=1

hmAi

�
Tg − Ti

�
δ (x − xi) . (14)

This concludes the description of the physical model considered in this paper, except for the
collision model which will be described in Subsection II D.

C. Numerical methods

The physical model presented in Subsections II A and II B is applied to DNS of turbu-
lent channel flow laden with droplets. Apart from the collision model, that will be described
in Subsection II D, the method is the same as used by Russo et al.2 and based on a method
for incompressible particle-laden turbulent channel flow.28 The method is pseudo-spectral, con-
sisting of a Fourier-Galerkin method in the periodic streamwise and spanwise direction and a
Chebyshev-collocation method in the wall-normal direction. The time integration method of the
gas phase is a combination of a third-order accurate explicit Runge-Kutta method and the implicit
Crank-Nicolson method. The latter is applied to the viscous and pressure term, whereas the former
treats all nonlinear terms and two-way coupling terms. These terms are calculated in physical space,
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using fast Fourier transform and the 3/2-rule for de-aliasing. The velocity field is divergence free up
to machine precision by the use of the influence matrix method.29 At the walls, no-slip conditions
are applied for the gas velocity. Moreover, a heat flux through the wall, constant in space and time,
is applied for the gas temperature equation in such a way that the total energy of the system remains
constant in time, and the diffusive flux of water vapor through the walls is set equal to zero.

The droplet equations are integrated in time using the forward Euler method on a partial
time step in each stage of the Runge-Kutta method applied for the gas phase. This reduces the
accuracy of the time integration method for the droplets to first order.11 However, the time step is
chosen so small that this does not significantly influence the statistical properties of the solution. A
higher-order time integration method, such as the Runge-Kutta method used in previous work,2,28

would greatly complicate the treatment of droplet collisions.
Gas properties are interpolated to the positions of the droplets by tri-linear interpolation. The

same weights as in the tri-linear interpolation are used to distribute the two-way coupling terms over
the 8 neighboring grid points.1,2 For the droplets, just as for the gas, periodic conditions are applied
in the streamwise and spanwise directions. That implies that a droplet re-enters the domain on the
opposite side to where it left with the same properties.

D. Collision algorithm

The algorithm used for collisions of two droplets consists of two elements: the collision detec-
tion and the calculation of droplet properties after the collision. In this work, a simplified version of
the model by Hoomans et al.13 and later modified by Vreman11 is applied. The simplification is that
droplet rotation is not taken into account.

In order to detect all collisions between two droplets within one stage of a Runge-Kutta time
step, the computational domain is divided into a large number of rectangular blocks. These blocks
are so small that they contain only a small number of droplets at most, but so large that a droplet
cannot travel so far within one stage that it collides with a droplet that started in a non-neighboring
block. Therefore, the search for colliding droplets can be limited to droplets within one block or
two neighboring blocks, taking into account the periodic conditions in the streamwise and spanwise
directions. If the number of droplets per block is not large compared to one, this changes the compu-
tational cost of the detection algorithm from order N2

d
to order Nd log(Nd) with Nd the number of

droplets.
A collision is detected if the distance between the centers of two droplets is equal to the sum of

their radii during the stage of a time step. Assuming constant velocity during this partial time step,
the time of collision and the positions of the two droplets at the time of collision can be determined.
The components of the velocity after the collision then follow from conservation of momentum
and the restitution coefficient. The droplets keep these velocities during the remainder of the partial
time step, if they do not collide again before the end of the partial time step. Collisions with a wall
are treated in the same way, where the walls are considered as perfectly smooth. After a collision,
only the wall-normal velocity of the droplet is changed based on the restitution coefficient. For both
droplet-droplet and droplet-wall collisions, we assume that part of the energy is converted into heat.
This is quantified by the restitution coefficient, e. The normal component of the relative velocity
before and after a collision satisfies13

vab · n = −evab,0 · n, (15)

where vab and vab,0 denote the relative velocity of droplets a and b after and before a collision and
n is the vector pointing from the center of droplet a to the center of droplet b at the moment of colli-
sion. It is assumed that the components of the relative velocity perpendicular to n are unchanged
during a collision. This leads to the following relations between the velocities before and after a
collision:

va = va,0 −
(1 + e)(vab,0 · n)n

1 + ma/mb
,

vb = vb,0 +
(1 + e)(vab,0 · n)n

1 + mb/ma
,

(16)
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where ma and mb denote the masses of droplets a and b and the subscript 0 refers to the pre-
collision values. We consider two cases for the restitution coefficient. Collisions are either fully
elastic, which corresponds to e = 1 and conservation of kinetic energy during a collision, or we use
e = 0.9, which agrees with the literature results for small droplets.21

The collision model applied here is not very sophisticated. In reality, droplet rotation may play
a role and droplets might coalesce instead of bounce. Moreover, if a droplet collides with a wall,
it might stick to it forming a liquid film, or it might splash and break into several small droplets,
depending on its impact velocity. However, since gravity is either absent or in the streamwise direc-
tion, the wall-normal velocity of a droplet is, in general, very small when it collides with a wall,
which prevents it from breaking up. Moreover, the formation of a liquid film can be prevented if the
wall is hydrophobic. Coalescence of two colliding droplets takes place in a certain range of Weber
numbers and diameter ratios.18,20 It will be shown in Sec. III that the Weber number in the present
simulations is so small that coalescence is very unlikely to occur.

The collision model greatly increases the computational requirements of one time step, even
in the most efficient case of 1–2 droplets per block on average. The reason is not only the increase
in floating point operations but also the lack of parallelizability of the present collision algorithm.
While the program without the collision part has been efficiently parallelized with OpenMP, the
collision algorithm runs only on a single processor in the present implementation. As a result, the
CPU time for one step is larger by a factor of 4, when the program is run on 16 processors and
for the highest droplet volume fraction considered in this paper. Presently, we are studying ways
to parallelize the collision algorithm, but it appears that this is not possible without sacrificing the
detection of all collision pairs.

III. DROPLET CONCENTRATION

In this section, the effects of droplet collisions on droplet concentration will be studied. First,
a description of the test cases will be given. The flow studied is droplet-laden turbulent channel
flow. The dimensions of the domain are 4πH in streamwise (x-)direction, 2H in wall-normal
(y-)direction, and 2πH in spanwise (z-)direction, where H = 2 cm is half the channel height.
The simulations are started from a fully developed turbulent velocity field at a frictional Reynolds
number Reτ = 150 based on the friction velocity and half the channel height, which corresponds
to a bulk velocity of 1.65 m/s. Initially, a uniform temperature of 20 ◦C and a uniform water
vapor mass density, corresponding to a relative humidity of 100% are prescribed. The number of
Fourier modes applied in both periodic directions equals 128 and 129 Chebyshev collocation points
in the wall-normal direction. It has been shown30 that for the present purpose, this resolution is
sufficient at the present Reynolds number. For other purposes, such as accurate statistics of velocity
derivatives, higher resolutions are required.31,32

At the start of the simulation, a number of droplets are inserted at random locations, uniformly
distributed over the computational domain and with their temperature and velocity equal to the
temperature and velocity of the gas at the location of each droplet. The initial droplet diameter
equals di = 3.09 × 10−3H = 61.8 µm, which corresponds to a Stokes number, defined as the droplet
relaxation time in wall units, of 10. The heat flux applied to the walls equals 32 W/m−2 and taken
in such a way that the upper wall is heated, whereas the lower wall is cooled. The driving force in
the Navier-Stokes equation is defined in such a way that the total mass flow rate of gas and droplets
remains approximately constant in time. All these parameters correspond to the reference test case
in Russo et al.2 The geometry of the problem studied in this paper is sketched in Fig. 1.

Various simulations have been performed for different numbers of droplets, both with and
without four-way coupling. Simulations H2 and H4 (high concentration) have 2 000 000 droplets,
simulations M2 and M4 (medium concentration) have half this number of droplets, and simulations
L2 and L4 (low concentration) have only 500 000 droplets. The overall volume fraction, the volume
of all droplets divided by the volume of the flow domain, φoverall, is approximately 2.2 × 10−4 in
cases H2 and H4. Initially, the distribution of droplets is uniform. The variations of the overall
volume fraction in time are on the order of 0.1%. Two simulations without four-way coupling, H2
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FIG. 1. Sketch of geometry. Note that in the real geometry, the coordinate system is right handed.

and M2, have also been considered by Russo et al. Here, specifically the effects of droplet collisions
will be investigated. In these six simulations, only fully elastic collisions between droplets and
the walls have been considered and gravity is not taken into account. However, in one additional
simulation, M4I, a normal restitution coefficient of 0.9 has been applied for both types of collisions
in order to investigate whether the elasticity of the collisions has an appreciable effect on the results.
Moreover, this same case has also been carried out for upward flow, M4IG, in which gravity is
pointing in the direction opposite to the mean flow. All test cases are summarized in Table I.

The heat flux applied to the upper wall leads to an increase of the gas temperature there and
by convective heat transfer between gas and droplets also of the droplet temperature. The increased
gas temperature results in an increase of the saturation pressure, so that locally the relative humidity
will become less than 100%. Therefore, droplets near the upper wall will start to evaporate. The
associated enthalpy of evaporation results in a decrease of the droplet temperature according to
Eq. (9), compared to the situation with solid particles instead of droplets. Therefore, the temperature
difference between gas and droplets increases compared to solid particles.2 Near the lower wall,
the opposite happens: the heat flux directed out of the computational domain leads to a decrease
of the gas temperature and droplets and to over-saturation and hence condensation of water vapor
onto the droplets. Therefore, the absolute temperature difference between gas and droplets increases
compared to the case with solid particles. The effects of this on the heat transfer properties of the
channel will be discussed in more detail in Sec. IV.

On a slower time scale, the droplet concentration profile across the channel will change by
turbophoresis.33,34 The inhomogeneity of the wall-normal velocity fluctuations in turbulent channel

TABLE I. Definition of the test cases; φoverall is the overall droplet volume
fraction.

Case
Number of

droplets Coupling φoverall

Restitution
coefficient Gravity

H2 2 × 106 Two-way 2.2 × 10−4 . . . No
M2 1 × 106 Two-way 1.1 × 10−4 . . . No
L2 0.5 × 106 Two-way 0.55 × 10−4 . . . No
H4 2 × 106 Four-way 2.2 × 10−4 1.0 No
M4 1 × 106 Four-way 1.1 × 10−4 1.0 No
L4 0.5 × 106 Four-way 0.55 × 10−4 1.0 No
M4I 1 × 106 Four-way 1.1 × 10−4 0.9 No
M4IG 1 × 106 Four-way 1.1 × 10−4 0.9 Yes
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FIG. 2. Droplet concentration close to the walls as a function of time in wall units, normalized by the initial concentration;
solid: H2; dashed: M2; dashed-dotted: L2. The concentration close to the wall increases because of turbophoresis.

flow leads to a gradual accumulation of droplets in the near-wall regions. This is illustrated in Fig. 2,
where the droplet concentration close to the walls is shown as a function of time. To this end,
the channel has been divided into 40 uniform slabs in the wall-normal direction and the number
of droplets in each slab has been counted. The concentration is normalized by the initial uniform
concentration (c0) in order to better compare the three cases with different overall droplet volume
fractions. Time has been expressed in wall units.

The figure shows that indeed the droplet concentration close to the walls increases in time.
The reference case in Russo et al.2 t+ = 2 × 104 (which corresponds to 26 s), a statistically steady
state is reached, in which the droplet concentration only fluctuates in time. The maximum possible
normalized wall concentration is equal to 20, if all droplets are located in the bins closest to each
wall. The maximum concentration reached in case H2 is 14c0 and is significantly lower than in case
one-way coupling is applied. The presence of the droplets attenuates the wall-normal gas velocity
fluctuations, and hence the turbophoretic force. This can also be appreciated from Fig. 2, where the
turbophoresis is seen to be stronger in case the overall droplet concentration is lower. The figure
shows that for case H2, the droplet volume fraction close to the walls is approximately 2.5 × 10−3,
which is in the regime where droplet collisions cannot be disregarded according to the classification
by Elghobashi.3

Locally, however, the droplet concentration can be an order of magnitude higher than the
average concentration in a given slab. In order to see this, the total computational domain is divided
into blocks and the number of droplets in each block is counted. Results depend on the number of
blocks; if there are only few droplets in each block, the concentration fluctuates strongly in time. For
a uniform division of the domain into 80 blocks in each direction, the volume fraction of droplets
close to the lower wall is shown in Fig. 3 for the three cases employing two-way coupling. The
figure shows an instantaneous result in a plane parallel to the wall at a time where the concentration
has reached a statistically steady state at t+ = 3.8 × 104. Note that the results on both walls are quali-
tatively the same. Although due to phase change the droplet size near both walls is different, this has
only a minor effect on the droplet concentration. This figure shows that indeed the volume fraction
exhibits large variations in space. Droplets are preferentially located in the low-speed streaks close
to the walls, resulting in local droplet volume fractions that are larger by a factor of ten compared
to the mean volume fraction close to the wall for case H2. Also for cases M2 and L2, local droplet
volume fractions much higher than the limiting value for the two-way coupling regime according to
Elghobashi3 are encountered. It is evident that at least for the droplets in the locally dense regions,
the omission of collisions cannot be justified. It is remarkable that cases M2 and L2 show an almost
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FIG. 3. Droplet volume fraction in a plane close to the lower wall; left: H2; right: M2; below: L2. The streamwise direction is
denoted by x, the spanwise by z. Droplets are clustering in low-speed streaks, which are parallel to the streamwise direction.

equal maximum volume fraction, but the average value in this plane close to the wall is smaller in
case L2 than in M2.

Next, the cases employing four-way coupling are considered. Figure 4 shows the droplet
concentration close to the walls as a function of time for the three different overall volume fractions,
along with case H2 for reference. There are two striking differences between the cases with and
without four-way coupling. First, the maximum droplet concentration close to the wall is much
lower when droplet collisions are taken into account. Second, the statistically steady state for
droplet concentration is reached much more quickly. After t+ ≈ 2000, the droplet concentration only
fluctuates around a mean value. This state is reached around t+ = 2 × 104 in the two-way coupling
cases. For all three values of the overall volume fraction, four-way coupling has a large effect on
droplet concentration, which shows that Elghobashi’s classification can certainly not be applied to
the overall volume fraction in the flow, even not if the Stokes number in wall units is fairly low.

Figure 5 shows the distribution of volume fraction in a plane close to the lower wall for the
three cases with four-way coupling at t+ = 1.6 × 104, long after the statistically steady state for
the droplet concentration has been reached. The maximum droplet concentration attained in these
cases is lower by a factor of approximately 8 than in the corresponding two-way coupling cases.
However, the droplets are still preferentially located in the low-speed streaks close to the walls.
Figure 6 shows the droplet concentration in a plane perpendicular to the streamwise direction for the
two cases with the highest overall volume fraction. In order to better visualize the results, isolines
of the square root of the droplet volume fraction have been shown. The figure shows that in both
cases, there are regions void of droplets, but in the two-way coupling case, these are larger. Also,
in case H4, the regions with large concentrations in the low-speed streaks have a larger size in the
wall-normal direction.

Next, we turn to the two cases where an additional physical effect has been considered: inelas-
ticity of the collisions and gravity. Figure 7 shows the concentration of droplets close to the wall
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FIG. 4. Droplet concentration close to the walls as a function of time in wall units, normalized by the initial concentration;
black solid: H2; red dashed-dotted: H4; blue dotted: M4; magenta dashed: L4.

as a function of time for the four cases with overall volume fraction equal to 1.1 × 10−4. The
figure shows that the restitution coefficient used in droplet-droplet and droplet-wall collisions has no
appreciable effect on the mean concentration close to the wall. Also the additional effect of gravity
is very small. The distribution of the volume fraction on a plane parallel and close to a wall is very
similar for all three cases employing four-way coupling. Apparently, both gravity and inelasticity of
the collisions do not play a significant role on the droplet distribution in this flow.

FIG. 5. Droplet volume fraction in a plane close to the lower wall; left: H4; right: M4; below: L4.
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FIG. 6. Droplet volume fraction in a plane perpendicular to the streamwise direction; left: H2; right: H4. Note that isolines
of the square root of droplet volume fraction are plotted.

In order to illustrate the differences between the cases with two-way and with four-way
coupling with respect to the droplet volume fraction close to the walls, we calculated the mean,
root-mean-square (RMS), and skewness of the droplet volume fraction in the region close to both
walls by dividing the computational domain in 80 equally sized blocks in all directions. The results
are collected in Table II for all test cases, where averaging over time in the statistically steady state
has been applied. The most striking differences between two-way and four-way coupling are seen
in the RMS and skewness. For the two-way coupling cases, the RMS is not much smaller than
the mean value, whereas for the four-way coupling cases, the RMS is smaller by approximately a
factor of 2 than the mean. The skewness of the droplet volume fraction distribution close to the wall
equals approximately 2 for the two-way coupling cases and is close to 1 for all four-way coupling
cases. This shows that the probability distribution function of the two-way coupling cases is much
more skewed toward large values in case of two-way coupling. When collisions are included, high
local values of droplet concentration are less likely to occur. Non-sticking collisions lead to more
random motion of the particles, and thereby smoothen maxima of the local droplet concentra-
tion. As a further illustration of this, we show the probability density functions for cases M2 and
M4 in Fig. 8. It is clear from the figure that not only the mean value is much larger in case of
two-way coupling, but the probability distribution function also extends to much higher volume
fractions.

FIG. 7. Droplet concentration close to the walls as a function of time in wall units, normalized by the initial concentration;
solid: M2; dashed: M4; dashed-dotted: M4I; dotted: M4IG.
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TABLE II. Mean, RMS, and skewness of droplet volume fraction close to
the wall for all test cases, calculated by dividing the computational domain
in 80 blocks in each direction.

Case ⟨φw⟩ RMS(φw) S(φw)
H2 4.5 × 10−3 3.0 × 10−3 1.96
M2 2.7 × 10−3 2.1 × 10−3 1.93
L2 1.47 × 10−3 1.21 × 10−3 2.11
H4 1.07 × 10−3 4.3 × 10−4 0.81
M4 7.9 × 10−4 3.7 × 10−4 0.91
L4 5.6 × 10−4 3.0 × 10−4 1.04
M4I 8.2 × 10−4 3.9 × 10−4 0.94
M4IG 8.0 × 10−4 4.0 × 10−4 1.04

To obtain a meaningful local average, the size of the blocks in which we divide the compu-
tational domain should evidently be larger than the droplet size, but smaller than the large scales
of the turbulence. Since there is no clear physical scale separation between the droplet size and
the large scales of the turbulence, the local volume fraction field, obtained with a volume average
acting in this range of scales, will to some extent depend on the volume of the local volume aver-
aging operator. In this respect, the local volume averaging operator is similar to the spatial filter in
large-eddy simulation, where the RMS of a filtered variable also depends on the filter size. Thus,
the magnitudes of RMS, skewness, and probability density function of the local volume fraction
field extracted from our DNS depend on the number of blocks used. If we use, for example, 40
blocks instead of 80 blocks in each homogeneous direction, keeping the number of blocks in the
wall-normal direction equal to 80, the skewness in case M2 drops from 1.93 to 1.34, while the
skewness in case M4 drops from 0.91 to 0.65. The effect of collisions on the skewness appears to
be less sensitive to the number of blocks: the numbers mentioned show that collisions reduce the
skewness by about a factor of two, both for 40 and 80 blocks.

IV. COLLISION FREQUENCY

In this section, we will consider the collision frequency found in the simulations and compare
it with results from the literature. To that end, we divided the wall-normal direction in 80 equally

FIG. 8. Probability density function of droplet volume fraction close to the walls, calculated by dividing the computational
domain in 80 blocks in each direction; solid: M2; dashed: M4.
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FIG. 9. Droplet number density (solid) and collision frequency (dashed) as functions of the distance to the wall for case M4
and droplet number density for case M2 (dashed-dotted). All quantities are normalized with their mean value.

sized slabs and counted the number of droplets and the number of collisions within each slab
during a sufficiently long time interval of the simulation. Figure 9 shows for case M4, the droplet
number density and the collision frequency as functions of the wall-normal coordinate, along with
the droplet number density of case M2. Results have been averaged over both halves of the channel,
as the difference between them is not significant. All quantities in the figure are normalized by
their mean value. The difference in droplet number density between cases M2 and M4 again shows
the large effect of including droplet collisions on the droplet concentration profile. Moreover, as a
result of the non-uniform droplet concentration in case M4, the collision frequency, defined as the
number of collisions per unit time per unit volume is even more non-uniform. The results in this
figure can be compared to the results by Yamamoto et al.10 for lycopodium particles (Figure 10d
in the reference). In view of the differences between the two simulations, in particular, also the fact
the Yamamoto et al. employed large-eddy simulation for the gas phase, the qualitative agreement
between the results is good.

Sundaram and Collins6 studied the collision statistics in DNS of homogeneous, isotropic
turbulence for particles with various Stokes numbers and compared the results with a theoretical
expression. They argued that the collision frequency, fc, depends on the particle number density, n,
the particle diameter, d, the relative velocity vr , and the particle radial distribution function, g(r),
according to

fc =
1
2
πd2n2g(d)vr , (17)

where vr is the mean relative velocity of two colliding particles and g(d) is the particle radial
distribution function at contact, when the distance between two particles is equal to the particle
diameter. In our present simulations, the droplet diameter is not constant, but the changes are so
small that we will assume in the subsequent analysis that the droplet diameter remains equal to its
initial value. In contrast to the case of homogeneous, isotropic turbulence studied by Sundaram and
Collins, the droplet number density, the mean relative velocity, and the droplet radial distribution
function may depend on the wall-normal coordinate in our study of turbulent channel flow. There-
fore, we evaluate the quantities appearing in (17) as a function of the wall-normal coordinate by
dividing the wall-normal direction in 80 equally sized slabs. In that way, the collision frequency, the
droplet number density, and the relative velocity can be determined as functions of the wall-normal
coordinate. From (17), the unknown quantity g(d) can then be determined as it is the only unknown.

By varying the particle diameter, Sundaram and Collins performed simulations for various
Stokes numbers, where the Stokes number in their case is the ratio of the particle relaxation time
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FIG. 10. Droplet collision frequency (solid) in number of collisions per unit volume and per unit time and 1
2πd

2n2vr
(dashed) as functions of the wall-normal coordinate for case M4.

and the Kolmogorov time. They found that g(d) is a function of the Stokes number. We only consid-
ered droplets of one diameter, but in our case, the Kolmogorov time depends on the wall-normal
coordinate. Therefore, we can consider particles with Stokes numbers ranging from 1 (at the center
of the channel) to 4 (at the wall). Figure 10 shows for case M4, the collision frequency as a function
of the wall-normal coordinate, along with the right-hand side of (17) for g(d) = 1. The results
show that the radial distribution function at contact, g(d), varies with the wall-normal coordinate.
The results show that the collision frequency is particularly high close to the walls of the channel,
where the local droplet concentration is the highest. The non-uniformity of the droplet concentra-
tion, caused by turbophoresis, is the main reason for the large effect of droplet collisions on the
concentration results shown in Sec. III.

By dividing the two lines shown in Fig. 10, g(d) can be determined as a function of the
Stokes number. The result is shown in Fig. 11 for cases H4, M4, and L4 and compared with the
results by Collins and Sundaram. There are two reasons why the results for g(d) are not so smooth.
First, close to the wall, the Kolmogorov time has a local minimum, which leads to the sudden

FIG. 11. Radial distribution function at contact determined from (17); solid: H4, dashed: M4, dashed-dotted: L4. The
symbols are taken from Sundaram and Collins.6
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jump in g(d) near St = 3.5. Second, in the center of the channel, the droplet number density and,
in particular, the collision frequency are so small that the determination of g(d) is less accurate.
Both our present results for cases M4 and L4 and the results by Sundaram and Collins show that
the particle radial distribution function at contact decreases for increasing Stokes number. Note,
however, that Sundaram and Collins found a sharp maximum in g(d) at St = 0.5. Apart from that,
there is a substantial difference in the value of g(d) of approximately a factor of 2, which may be
attributed to the differences between the two flows considered. Since the radial particle distribution
function is highly dependent on preferential concentration, differences between homogeneous and
inhomogeneous flows can be expected. At the channel center, where St is small, g(d) is much larger
than 1 for cases M4 and L4. For case H4, such high values of g(d) in the center of the channel are
not observed. This may be attributed to the higher mean droplet volume fraction in the center of the
channel for this case and the resulting increased effect of collisions there.

One of the quantities contributing to the collisions frequency is the mean relative velocity of
two colliding droplets. In Fig. 12, this quantity is shown as a function of the wall-normal coordinate
and compared with the mean relative velocity of all particle pairs within a slab in the wall-normal
direction. The figure shows that the shape of these two mean relative velocities is similar, but
the mean relative velocity of two colliding droplets is significantly smaller than the mean relative
velocity of all droplet pairs. The same observation was made by Sundaram and Collins6 for homo-
geneous, isotropic turbulence. The reason is that droplets that collide must be close and have a
larger chance that their velocities are correlated than droplets that are further apart, because of the
interaction between droplets and gas. It can be expected that very large droplets, which respond to
the gas flow much more slowly, behave more randomly. This will lead to a higher relative velocity
of two colliding droplets.

As a last topic of this section, we investigate other properties of droplet pairs that collide.
During the statistically steady state of the cases with four-way coupling, the Weber number of all
colliding droplet pairs was monitored during a certain time interval. The Weber number is defined
here as

We =
ρlv

2
reldi

σ
, (18)

where σ is the surface tension of water in air, vrel is the magnitude of the relative velocity of the
two colliding droplets, and di is the diameter of the smallest of the two droplets. The maximum
Weber number found was approximately 1.5 and less than 0.04% of all collisions occurred at
We > 1. The mean value of the Weber number of all colliding droplets was 0.057 for case H4 and

FIG. 12. Mean relative velocity of two colliding droplets (solid) and of all droplet pairs (dashed) as functions of the
wall-normal coordinate for case M4.
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0.043 for case M4. This makes clear that the assumption that colliding droplets do not coalesce but
bounce is justified according to experimental results for colliding droplets.18–20 Ko and Ryou35 used
a combination of two conditions for grazing bounce collisions between two droplets, based on the
work of O’Rourke.36 Colliding droplets bounce if the Weber number is sufficiently small and if the
angle between their relative velocity and separation vector is larger than a critical value that depends
on the Weber number and the diameter ratio. It appears that the combination of these two conditions
is satisfied in 95% of all collisions in the simulations reported here. For collisions between a droplet
and the wall, the mean value of the Weber number is even an order of magnitude smaller, while
the maximum value found was 0.36. Since the diameter of all droplets does hardly change during
the simulation, the reason for the low value of the Weber number is the low relative velocity. As
already observed above, due to the rather low value of the droplet relaxation time, the droplets
quickly adjust to the local velocity. Therefore, neighboring droplets do not have a large difference in
velocity.

V. THERMAL PROPERTIES

In the paper on heat transfer enhancement in turbulent channel flow by inertial solid particles,1

it has been shown that the heat transfer across the channel can be quantified by the Nusselt number,
defined as

Nu =
2H
∆Tg

d⟨Tg⟩
dy

�����wall
, (19)

where brackets denote averages over the homogeneous directions and time, the wall-normal deriva-
tive is evaluated at a wall, and ∆Tg is the temperature difference between the two walls. Moreover,
the Nusselt number can be split into three parts according to Nu = Nulam + Nuturb + Nupart. This
follows from averaging the gas temperature equation over time and the homogeneous directions and
integration of the result twice over the wall-normal direction.1,2 The first contribution, Nulam = 1, is
the Nusselt number for laminar flow without particles. The second contribution is due to turbulence,

Nuturb = −
1

α∆Tg

 H

−H
⟨u′yT ′g⟩dy, (20)

where a prime denotes the fluctuating part of a quantity, α = kg/(ρgcg) is the thermal diffusivity
of the gas, and uy is the wall-normal velocity component of the gas. Finally, the third contribution
Nupart is due to the particles by the two-way coupling term in the equation for the gas temperature,
but note that the presence of particles also influences the second contribution. The third contribution
can be approximated by

Nupart ≈ −
 H

−H

 y

−H

2πn(s)dp⟨Tg − Tp⟩
∆Tg

dsdy, (21)

where n(s) is the local particle number density, which depends on the wall-normal coordinate, dp

and Tp denote particle diameter and particle temperature, and the gas temperature is evaluated at
the particle position. The large increase in Nusselt number when inertial particles are present could
be fully attributed to Nupart, since Nuturb even decreased in the presence of particles, and was ex-
plained by the combination of the high particle concentration close to the walls and the temperature
difference between particles and gas there.1

Russo et al.2 showed that in the present case of evaporating droplets instead of solid particles,
there are some extra contributions to the expression for the Nusselt number (19), but they were
shown to be negligibly small in all cases considered. Compared to solid particles, droplets lead to a
larger increase in Nusselt number, since the enthalpy of evaporation related to phase change results
in a higher temperature difference between droplets and gas.

Both studies1,2 did not take particle or droplet collisions into account. In Sec. III, it has been
shown that droplet collisions result in significantly lower droplet concentrations close to the wall.
Therefore, the argument of high concentration in the regions where the temperature difference
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FIG. 13. Mean temperature as a function of the wall-normal coordinate in the statistically steady state; solid black: H2;
dashed black: M2; dashed-dotted red: H4; dotted blue: M4. The mean temperature is averaged over the streamwise and
spanwise directions and over time in the steady state.

between the continuous and dispersed phase is the largest (used in these papers to explain the large
value of Nupart according to (21)) cannot be applied to the present cases with four-way coupling. In
this section, the effect of four-way coupling on the mean temperature profile in the channel will be
investigated, and its effect on the heat transfer across the channel will be quantified by the Nusselt
number.

Figure 13 shows the mean temperature profile across the channel for four of the cases stud-
ied in this work. The results are averaged over the two homogeneous directions and over time in
the statistically steady state. The results of the four cases shown here are quite close, but some
differences can be seen, especially in the temperature close to the walls. For the present settings,
where the heat flux at the walls is fixed, the magnitude of the temperature difference between the
walls is a direct measure for the Nusselt number according to Eq. (19). The Nusselt numbers in
the steady state are listed in Table III. As already found by Russo,2 a lower overall droplet volume
fraction results in a somewhat smaller Nusselt number and this tendency is retained for the lowest
overall droplet volume fraction studied here. Also, four-way coupling yields a reduced Nusselt
number as compared to the same case with only two-way coupling, but the reduction in Nusselt
number is much less than the reduction in droplet concentration close to the walls. For all overall
volume fractions considered here, the Nusselt number is reduced by only approximately 17% if
four-way coupling is employed. Note that the Nusselt number for the same non-isothermal flow
without droplets or particles2 equals 4.4, which shows that the increase of the Nusselt number by the
presence of droplets remains significant if droplet collisions are taken into account. It is remarked

TABLE III. Nusselt number and its contributions for all test cases.

Case Nu Nulam Nuturb Nupart

H2 15.6 1.0 3.1 11.5
M2 14.1 1.0 3.1 10.0
L2 12.4 1.0 3.2 8.2
H4 13.0 1.0 2.3 9.7
M4 11.9 1.0 2.5 8.4
L4 10.8 1.0 2.6 7.2
M4I 11.9 1.0 2.5 8.4
M4IG 12.6 1.0 2.7 8.9
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FIG. 14. Mean temperature difference between gas and droplets as a function of the wall-normal coordinate in the statistically
steady state; solid black: H2; dashed-dotted red: H4. The mean temperatures are averaged over the streamwise and spanwise
directions and over time in the steady state.

that inelasticity of collisions does not have any effect on the Nusselt number for the restitution
coefficient of 0.9 adopted here. Finally, the test case in which gravity is included shows a slightly
increased Nusselt number compared to the same case without gravity.

Since collisions reduce the droplet concentration close to the walls by almost a factor of three
(see Fig. 4), one of the other contributions to the expression for Nupart given by (21) must be
simultaneously increased by almost the same factor. The droplet diameter in (21) is not the reason
for this. The mean droplet diameters as a function of the wall-normal coordinate resulting from
cases H2 and H4 are almost indistinguishable. The absolute temperature difference between gas and
droplets, however, is significantly increased by the droplet collisions, as illustrated in Fig. 14, which
shows the mean temperature difference between gas and droplets as a function of the wall-normal
coordinate in the statistically steady state. Close to the upper (warm) wall, the mean droplet temper-
ature is almost unchanged by the effects of collisions. This temperature is mainly determined by the
rate of evaporation, which is almost equal in the two cases, as evidenced by the unchanged mean

FIG. 15. Non-dimensionalized contribution −⟨u′yT ′g ⟩H/(α∆Tg ) to the Nusselt number according to Eq. (20) as a function
of the wall-normal coordinate; solid black: H2; dashed black: M2; solid magenta: L2; dashed-dotted red: H4; dotted blue:
M4; dashed magenta: L4; solid blue: M4IG. The integral of the plotted quantity over y is equal to the contribution Nuturb to
the Nusselt number.
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FIG. 16. Mean droplet volume fraction as a function of the wall-normal coordinate, (H − y)/H , averaged over time in the
steady state and over the two halves of the channel; solid black: H2; dashed black: M2; solid magenta: L2; dashed-dotted red:
H4; dotted blue: M4; dashed magenta: L4.

droplet diameter. The mean gas temperature, however, is significantly higher if droplet collisions are
taken into account. The reason is that the convective heat transfer between droplets and gas transfers
less energy from the droplets to the gas, since the surface area of droplets present in this region is
much less. Close to the lower (cold) wall, the argument is opposite.

The reduction of the Nusselt number due to four-way coupling is not only caused by the
difference in Nupart but also by a reduction in the turbulent contribution Nuturb, as can be seen in
Fig. 15, where the term −⟨u′yT ′g⟩H/(α∆Tg), which appears in the integral in Eq. (20), is shown as
a function of the wall-normal coordinate for most of the cases considered here. Case M4I is not
included since it coincides with case M4. The contribution Nuturb is the integral of the quantity
shown in the figure. The figure shows that the central region of the channel is most important
for this contribution. Droplet collisions lead to higher droplet concentrations in the central region
of the channel, especially in case H4, where the droplet volume fraction is the highest. All three
non-negligible contributions to the Nusselt number are shown in Table III. The attenuation of the

FIG. 17. RMS of wall-normal fluid velocity fluctuations scaled with the bulk velocity as a function of the wall-normal
coordinate; solid black: H2; dashed black: M2; solid magenta: L2; dashed-dotted red: H4; dotted blue: M4; dashed magenta:
L4; solid blue: M4IG.
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correlation of the wall-normal gas velocity and the temperature by the collisions can be understood
from the higher droplet concentration in the central region of the channel.

The time-averaged droplet volume fraction profiles for almost all cases are shown in Fig. 16,
where logarithmic scaling and averaging over the two halves of the channel have been used for bet-
ter clarity. The results of simulations M4I and M4IG are almost indistinguishable from the results
of M4 and are not shown here. The higher droplet concentration in the center of the channel for the
cases with four-way coupling also results in reduced fluid velocity fluctuations in the wall-normal
direction there, as is shown in Fig. 17. A similar decrease can be found in the spanwise velocity
fluctuations, whereas the streamwise velocity fluctuations are almost not affected by the droplet
collisions and the resulting changed droplet concentration. A remarkable result is the higher level of
the wall-normal velocity fluctuations found in the case with gravity.

VI. CONCLUSIONS

In this paper, the effect of droplet collisions on droplet concentration and on the gas temper-
ature profile has been investigated in droplet-laden differentially heated turbulent channel flow by
means of DNS and employing a Lagrangian point-particle approach for the droplets. All collisions
between two droplets have been taken into account by a deterministic approach. Results with and
without four-way coupling have been compared for three different overall droplet volume fractions
and the effects of inelastic collisions and gravity in the upstream direction have been considered.

It has been found that local droplet volume fractions close to the channel walls become so high
due to turbophoresis and preferential concentration, that collisions have a large effect on droplet
concentration, even though the domain-averaged droplet concentration is within the regime for
two-way coupling according to the classification by Elghobashi.3 For dilute gas-solid flow, it is
known that collisions can strongly reduce the particle concentration near the wall, at least when
the Stokes number is sufficiently high.9–11 Elghobashi’s diagram3 indicates that the demarcation line
between the two-way and four-way coupling regimes shifts toward lower volume fraction if the
Stokes number becomes higher. However, in the present work, the Stokes number is only 10 in wall
units, which shows that the effect of collisions on concentration in dilute flows is not limited to
very high Stokes numbers. Moreover, a steady concentration profile is reached in a much shorter
time than when only two-way coupling is applied. In addition, the positive skewness of the local
droplet volume fraction distribution near the walls is reduced by a factor of two. From the calculated
collision frequency, the droplet radial distribution function at contact has been determined and
found to depend on the Stokes number based on the Kolmogorov time in a qualitatively similar way
as found by Sundaram and Collins6 for homogeneous, isotropic turbulence, although the value is
about a factor of two lower.

In spite of the much lower droplet concentration close to the walls, the increase in heat transfer,
quantified by the Nusselt number, compared to the same flow without droplets, is only moderately
decreased by the effect of droplet collisions. That the decrease is only moderate has been explained
by the higher temperature difference between droplets and gas close to the walls, which is due to
the lower heat-exchange area available. The higher droplet concentration in the central part of the
channel compared to two-way coupling only results in a decrease in the wall-normal and spanwise
gas velocity fluctuations.

In the present work, it has been assumed that droplets always bounce during a collision. The
low value of the Weber number and relatively high grazing angle of two colliding droplets for most
of the collisions show that this assumption is justified.
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