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a b s t r a c t 

The formation of a stagnant cap on a bubble attached to a microelectrode is studied by means of numer- 

ical simulation including both thermo- and solutocapillary effects. Recently, strong Marangoni flow in an 

electrolyte around electrogenerated bubbles was observed by Yang et al. [1] and Massing et al. [2]. High 

local current density above the electrode led to Ohmic heating of the electrolyte near the bubble foot 

and resulted in thermocapillary convection. However, the experimentally observed Marangoni convection 

can be predicted better if a stagnant cap of surfactants on the top of the bubble is assumed. The present 

work provides evidence that supports this hypothesis and simulates the stagnant cap utilizing two meth- 

ods. In the first method, a critical stagnation angle θs , which marks the border of the stagnant cap, is 

specified. At the top of the bubble above the stagnation θs the interface motion is suppressed whereas 

at the bottom of the bubble below the stagnation θs the thermocapillary effect dominates. In the more 

extensive second method, a transport equation for the surfactant concentration on the bubble interface 

is included. In this method, the thermo- and solutocapillary effects compete along the entire interface 

of the bubble. As a result, the top part of the bubble interface will stagnate. We quantify the rigidity of 

the bubble interface by a dimensionless number, the elasticity number. This elasticity number is the ratio 

of the solutocapillary stress due to surfactant variation to the thermocapillary stress due to temperature 

variation. The relevant temperature variation is due to Ohmic heating and is observed to scale with the 

square of the potential difference. As a consequence, the Marangoni velocity is also found to scale with 

the square of the potential difference. 

Additionally, the forces acting on the bubble before detachment are analysed. Special attention is given 

to the Marangoni force that is more dominant than reported previously because we included the force 

caused by the uneven pressure distribution along the bubble interface. The pressure distribution is un- 

even due to a secondary Marangoni vortex in the wedge between the bubble and the electrode. Further- 

more, a general framework for Marangoni numbers is introduced to quantify the effect of each specific 

source of surface stress variation upon the spatial distribution of each variable governed by a convection- 

diffusion equation. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Bubbles adhering to electrodes or accumulating near electrodes 

vert efficient electrolysis. By reducing the active electrode area 

r decreasing the effective electrolyte conductivity bubbles con- 

ribute to significant losses during electrolysis. Quick removal of 

hose bubbles, whilst maintaining a high production rate is there- 
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ore vital for efficient electrolysis. Finding the delicate balance be- 

ween production rate and efficiency remains a major challenge in 

lectrochemistry. Many complex processes contribute to the gen- 

ration of bubbles and their hydrodynamic behaviour inside the 

lectrolyte. Amongst those processes are nucleation, growth and 

etachment of bubbles on and from the electrode, and coalescence 

f bubbles in the electrolyte. Gas-liquid interfaces play a pivotal 

ole in many physico-chemical systems and often involve capil- 

ary effects. Surface tension, which depends on temperature, elec- 

ric potential, or chemical composition, is important in all of the 

forementioned processes. Variations in surface tension along gas- 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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iquid interfaces are known to induce capillary flow also known 

s Marangoni convection. Marangoni convection can be found in a 

ide range of gas-liquid systems from the famous tears of wine 

nd coffee stain effect to nucleate pool boiling and flow surround- 

ng electrogenerated hydrogen bubbles [1,3–5] . 

Experimental investigation of nucleation, growth and detach- 

ent of bubbles near an electrode can be challenging due to the 

ast amount of bubbles that are generated and their seemingly 

andom spatial locations during typical electrolysis operation con- 

itions. Therefore, many studies investigate individual bubbles that 

re generated on nano- or micro-electrodes. Bubbles growing on 

hese electrodes are generated in an a priori determined location 

n the small electrode area, which makes optical experimentation 

easible. 

Preliminary studies of nanobubbles generated on nanoelec- 

rodes were performed by Luo and White [6] , Perera et al. [7] and

hen et al. [8] . These studies provide measurements of stable hy- 

rogen nanobubbles and pave the way towards a better under- 

tanding of bubble nucleation and growth. Besides nanoelectrodes, 

ernández et al. [9] used electrochemical measurements, frequency 

nalysis and high-speed photography to construct pictures of 

rowth and release of microbubbles from platinum (Pt) microelec- 

rodes. They identified a critical surface tension σ = 0 . 070 N / m be-

ow which a transition occurs from periodic to aperiodic detach- 

ent of microbubbles. Yang et al. [10] studied the dynamic nucle- 

tion, growth and detachment at similar (Pt) microelectrodes. They 

oncluded that periodic current oscillations, resulting from the pe- 

iodic formation and detachment of single bubbles, allow the bub- 

le lifetime and size to be predicted from the transient current. 

his work was followed by a series of investigations that focus on 

etachment specifically due to Marangoni convection around these 

ubbles [1,2,11,12] . In the latter, different microelectrode sizes are 

nvestigated numerically. Also, a model of a planar electrode with a 

eriodic bubble distribution is proposed, aimed at identifying more 

ndustrial applicable design parameters. Marangoni flow around a 

rowing bubble at an electrode surface is known to delay detach- 

ent of bubbles and to influence fluid dynamics, heat and mass 

ransfer of rising bubbles [13–17] . To our knowledge the first ex- 

erimental observation of Marangoni convection during electrolysis 

as done by Guelcher et al. [18] . They found that thermocapillary 

onvection was responsible for the mutual attraction between gen- 

rated bubbles. Recently, Yang et al. [1] experimentally observed 

arangoni convection during electrolysis near a bubble growing at 

 microelectrode. Using Particle Tracking Velocimetry (PTV) con- 

ective vortices were observed around the bubble. After improving 

he experimental setup with high-speed imaging employing parti- 

le image velocimetry (PIV) and using temperature-sensitive lumi- 

escent tracer particles both velocity and temperature around the 

ubble were measured. By comparing experimental results with 

etailed numerical simulations Massing et al. [2] concluded that 

he Marangoni flow was the result of thermocapillary convection 

nduced by Ohmic heating of the electrolyte near the electrode. 

he simulated temperature profile along the bubble interface is 

n good agreement with experimental observations. The simulated 

onvection showed good agreement with experimental observa- 

ions near the foot of the bubble. However, significant discrepan- 

ies were found above the center half of the bubble. These dis- 

repancies were hypothesized to be the result of other surface ten- 

ion effects like the electrocapillary effect, whereas the solutocapil- 

ary effect was ruled out. These two effects will be revisited in the 

resent work. In addition, we argue and provide supporting sim- 

lation evidence that the detailed experimental results of Massing 

t al. [2] can be best explained by the assumption of a stagnant cap 

n top of the electrogenerated bubbles. Bashkatov et al. [11] re- 

orted that oscillating detachment behaviour can be attributed to 

he competition between thermo- and electrocapillary convection, 
2 
inting to a possible explanation for the earlier mentioned discrep- 

ncies. The Marangoni convection around a bubble is the source of 

 force acting on the generated bubble. The existence of this ad- 

itional force, the so-called Marangoni force, that retards or en- 

ances bubble detachment was mentioned by numerous authors 

1,2,11,12] . 

Despite that, a complete description of the forces acting on an 

lectrogenerated bubble before and during detachment is still lack- 

ng. Forces acting on the bubble include buoyancy, surface tension, 

nd pressure contact forces. The buoyancy force and pressure con- 

act force are known to lift the bubble whereas surface tension and 

ydrodynamic forces often retard the bubble detachment [19,20] . 

nalysis of detachment forces acting on electrogenerated bubbles 

s rare in literature. However, we can draw a useful analogy be- 

ween electrogenerated bubbles and vapor bubbles during boiling 

21] . Thermocapillary convection near a vapor bubble generated by 

trong local boiling is qualitatively comparable to thermocapillary 

onvection near an electrogenerated bubble, which enables us to 

se a more developed field of research with more available litera- 

ure [12] . Therefore, we can use relevant equations for forces acting 

n bubbles from literature about strong (thermocapillary driven) 

oiling. For example, the Fritz radius and other correlations for 

redicting the bubble departure radius can be used [22,23] . Some- 

imes these works also include the solutocapillary effect. For ex- 

mple Chen et al. [15] have recently shown that including both 

hermo- and solutocapillary Marangoni forces in the force balance 

f the bubble improves the estimate of bubble departure radius. 

A stagnant cap on a bubble can be formed when contaminants 

re present in the liquid and consequently adsorb to the gas-liquid 

nterface, making it partially immobile. Frumkin [24] was the first 

o observe a gradient in the monolayer of adsorbed contaminants 

t the interface of a fluid. In a later stage Levich [25] elaborated 

n the physico-chemical nature of this phenomenon. A model that 

escribes the transport of the contaminants was developed and 

alled ”the stagnant cap model”. This model was later improved 

pon by Griffith [26] , Sadhal and Johnson [27] and He et al. [28] .

he surfactant molecules adsorbed to the interface are entrained 

y the flow towards the bottom of a rising bubble. As shown on 

umerous occasions the terminal velocity of bubbles in contami- 

ated water decreases with increasing contaminant concentration 

ue to additional drag to the stagnant part of the bubble [29] . 

owever, surfactant concentration fields have only recently been 

isualized, showing the formation of a stagnant cap and reduced 

erminal velocity of rising bubbles [30] . 

In our work, the stagnant cap formation is not due to the 

otion of the bubble through the liquid, but rather due to the 

emperature-driven Marangoni convection that transports contam- 

nants to the top of the bubble. In our work, the partial stagnation 

f the interface is modelled in two ways. In the first model, a stag- 

ation angle θs is prescribed that defines the position of stagnation 

n the bubble interface. At the contaminant-free part of the bubble 

nterface, a thermocapillary stress condition is applied, whereas at 

he stagnant cap a zero stress boundary condition is applied. The 

econd model is more advanced because it incorporates a partial 

ifferential equation for the transport of the insoluble surfactant 

long the bubble interface. In this model, a solutocapillary effect is 

ncluded, which competes with the thermocapillary effect. Shmy- 

ov et al. [29] and Homsy and Meiburg [31] investigated the for- 

ation of such a stagnant cap in a two-dimensional geometry, a 

ele-Shaw cell. This geometry is favorable compared to a bubble 

ecause the gas-liquid interface is not curved, which significantly 

implifies the governing equations as well as experimental obser- 

ations. They studied the extent of surface stagnation due to in- 

oluble surfactants convecting over the gas-liquid interface. This 

tagnation zone depends on a single parameter E, the elasticity 

umber, that describes the competition between thermocapillary 
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nd solutocapillary effect. Shmyrov et al. [29] also describes phase 

ransitions in the layer of surfactants, and convincingly shows an 

greement between theory, experiment and numerical simulations. 

n the present study, the numerical study performed by Shmyrov 

t al. [29] is used as a benchmark study for the implementation 

f a stagnation zone on a gas-liquid interface. For this benchmark 

tudy, we present a correction on the set of governing equations. 

dditionally, we incorporate a similar insoluble surfactant trans- 

ort model in our numerical method. With the help of this imple- 

entation, we relate the point of stagnation on the bubble inter- 

ace to the competing thermo- and solutocapillary effect. Addition- 

lly, we define an elasticity number E b that quantifies the rigidity 

f the bubble interface due to the transport of surfactants. 

The paper is structured as follows: in Section 2 , we introduce 

he Marangoni effect and its origin. In Section 3 , we present the 

arangoni flow near the electrogenerated bubble foot of a bub- 

le with a prescribed stagnation point. In Section 4 , we describe 

 model where the Marangoni flow around a bubble is computed 

nd where the dynamic stagnation point is determined by the 

ransport of insoluble surfactants. In Section 5 we conclude our 

ndings and address future research recommendations. 

. Marangoni effect 

The surface tension σ of a gas-liquid interface depends on the 

emperature T , on the potential φ and on a species concentration 

ector c , consisting of n concentrations c i . Using a Taylor expan- 

ion, the change of the surface tension ( �σ ) due to a changes of 

he temperature ( �T ), the potential ( �φ) and the concentrations 

 �c i ) is approximated by 

σ (T , φ, c i ) = σT �T + σφ�φ + 

n ∑ 

i=1 

σc , i �c i , (1) 

here σT , σφ and σc , i are the partial derivatives of surface ten- 

ion with respect to temperature, potential and concentration of 

pecies i . To asses the magnitude of Marangoni numbers and sur- 

ace tension changes we use temperature, potential and concentra- 

ion changes from simulations that will be discussed in more detail 

n Section 3 . 

The Marangoni effect is a manifestation of the stress at a gas- 

iquid interface due to gradients in surface tension. This stress 

eads to convection in the neighbouring phases. As a surface ten- 

ion gradient finds its origin in temperature, potential or concen- 

ration gradients we assign different names to these separate ori- 

ins. We distinguish: 

1. thermocapillary convection, due to temperature gradients at 

gas-liquid interface, 

2. solutocapillary convection, due to gradients in one or more 

species concentrations, 

3. electrocapillary convection, due to gradients in the potential at 

the gas-liquid interface. 

To estimate the importance of Marangoni convection on the dis- 

ribution of variable ζ (temperature or a species concentration), 

he Marangoni number Ma ζ is defined as 

a ζ = 

|∇ s σ L 2 | 
μD ζ

≈ | �σ L | 
μD ζ

, (2) 

here ∇ s σ is the surface tension gradient with respect to spa- 

ial coordinates along the surface and �σ is the change in sur- 

ace tension over a typical length scale L, μ is the viscosity of 

he fluid and D ζ is the diffusion coefficient of variable ζ . We re- 

ark that we do not use ζ = φ, because the potential φ is gov- 

rned by local electroneutrality and the resulting Laplace equa- 

ion is therefore by definition not influenced by the velocity of the 
3 
uid. The Marangoni number can be regarded as the Peclet num- 

er Pe = u M 

L/D ζ = Ma ζ , where u M 

is the Marangoni convective ve-

ocity that follows from the balance between the viscous tangential 

tress and surface tension variation, u M 

= �σ/μ. This Peclet num- 

er indicates the competition between Marangoni convection and 

iffusion. Similarly the Marangoni number indicates whether the 

arangoni convection has a significant effect ( Ma ζ >> 1 ) or in- 

ignificant effect ( Ma ζ << 1 ) on the distribution of ζ . Although of- 

en overseen, Marangoni convection, i.e. convective behaviour due 

o surface tension gradients, can have various origins and often 

hey act simultaneously. In the present paper, we deal with com- 

lex interface behaviour where there are collaboration and compe- 

ition between the thermocapillary and solutocapillary effect. 

Taking this into consideration we rewrite the Marangoni num- 

er defined in Eq. (2) as 

 a ζ = 

∣∣∣∣∣∑ 

ξ

M a ζ ,ξ

∣∣∣∣∣, (3) 

here 

a ζ ,ξ = 

L 2 σξ∇ s ξ

μD ζ
, (4) 

here the first subscript ζ indicates the distribution of interest 

nd the second subscript ξ indicates the origin of the Marangoni 

tress. Therefore ζ is either temperature or concentration, whereas 

he variable ξ is a variable of the set [ T , φ, c 1 , ...., c n ] . The sum over

runs over all variables in this set. σξ = 

∂σ
∂ξ

is the partial deriva- 

ive of surface tension. The Marangoni number given in Eq. (4) , 

an be used to estimate the importance of the gradient in sur- 

ace tension due to any gradient in ξ on establishing a solution 

or the transport equation of variable ζ . For example Ma T ,φ de- 

cribes the relative importance of Marangoni convection due to a 

radient ∇φ along the interface compared to thermal diffusion. 

n other words, a large Ma T ,φ indicates that, compared to ther- 

al diffusion, Marangoni convection induced by the potential gra- 

ient has a large effect on the temperature distribution. By assess- 

ng the different magnitudes of σξ∇ s ξ , we can compare the rela- 

ive importance of multiple Marangoni effects. Since it has already 

een shown by Massing et al. [2] that thermocapillary convection 

s present during electrolysis we can asses the relative importance 

y comparing σξ∇ s ξ with σT ∇ s T . In case | σξ∇ s ξ | << | σT ∇ s T | we

an neglect the effect and in case | σξ∇ s ξ | >> | σT ∇ s T | we can ne-

lect the thermocapillary effect. 

Therefore in our analysis, we start by estimating the magni- 

ude of the respective Marangoni numbers utilizing Eq. (4) before 

mplementing Marangoni convection in respective transport equa- 

ions of our numerical solver. In the next paragraph, we discuss the 

espective origins for Marangoni convection in more detail and we 

stimate their relative importance. 

.1. Origins of surface tension gradients 

.1.1. Thermocapillary effect 

The Marangoni number that describes the influence on temper- 

ture distribution in the special case where there is only a ther- 

ocapillary effect, i.e. the species concentration and potential are 

onstant over the interface of a bubble, can be written as 

a T , T = 

∂σ
∂T 

∇ s T d 
2 
b 

μD T 

≈
∂σ
∂T 

�T d b 

μD T 

, (5) 

here the characteristic length scale is the diameter d b of the bub- 

le. The derivative of surface tension to temperature is σT = 

∂σ
∂T 

= 

0 . 16 · 10 −3 N / mK [2] . We estimate the magnitude by estimating

he gradient in temperature using ∇ s T ≈ �T /d. Based on simula- 

ions by Massing et al. [2] the temperature difference along the 
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Table 1 

List of Marangoni numbers that describe individual and combined surface tension effects on formation of temperature, species and 

potential distribution. 

Thermocapillary Solutocapillary Electrocapillary Combined effects 

Surface tension change [N / m] σT �T = −2 . 24 · 10 −3 σ	�	 = 0 . 57 · 10 −3 σφ�φ = −4 . 45 · 10 −7 
∑ ∂σ

∂ξ
�ξ = −1 . 67 · 10 −3 

Temperature distribution Ma T,T = −18012 Ma T, 	 = 4583 Ma T,φ = −4 Ma T = 13433 

Surfactant distribution Ma 	,T = −2 . 51 · 10 6 Ma 	, 	 = 0 . 64 · 10 6 Ma 	,φ = −4 . 98 · 10 3 Ma 	 = 1 . 87 · 10 6 
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ubble interface at the bubble foot is �T ≈ 14 K . Other properties 

n Eq. (5) of the electrolyte can be found in Table 3 . The thermo-

apillary Marangoni number is Ma T , T ≈ 1 . 8 · 10 4 , which indicates 

trong thermal convection in the wedge area near the bubble foot. 

he Marangoni convection, due to the thermocapillary effect has a 

ominant effect on the temperature distribution around the bub- 

le. 

.1.2. Solutocapillary effect 

Solutocapillary effects can originate from gas concentration, 

lectrolyte concentration and surfactant concentration gradients at 

 gas-liquid interface. It was found by Lubetkin [13] that gases 

resent in electrolysis influence the surface tension. The gradients 

f the gas concentration can be predicted well with numerical 

ethods, which has also been done in previous studies. Massing 

t al. [2] concluded that the influence of these gases on Marangoni 

onvection would be minimal. They also concluded that the effect 

f variations in electrolyte concentration on the Marangoni convec- 

ion can be ignored. 

However, the role of contaminants/surfactants in previously 

one experiments was not mentioned by Massing et al. [2] and 

annot be easily simulated without a priori assumptions. Inter- 

stingly, a small surfactant concentration c surfactant = 10 −7 mol / m 

3 

an significantly influence the flow behaviour around drops and 

ubbles [30,32] . In the case of surfactants, it is convenient to use 

 surface concentration 	, which is expressed in mol / m 

2 . The sur- 

actant Marangoni number is defined by 

a 	, 	 = 

∂σ
∂	

∇ s 	d 2 
b 

μD 	
≈

∂σ
∂	

�	d b 

μD 	
, (6) 

here the partial derivative of the surface tension to surface con- 

entration is σ	 = 

∂σ
∂	

≈ −78 . 9 Nm / mol [29] . We can compute the 

radient of surfactants along the gas-liquid interface with a set of 

ransport equations that are addressed in Section 4 . The influence 

f surfactants on bubbles during electrolysis is a novel field of re- 

earch. Lubetkin [13] mentioned the importance of surfactants in 

lectrolysis systems and the possibility of the formation of a stag- 

ant cap. A stagnant cap is a layer of surfactant molecules that oc- 

upies a part of the bubble interface. In contrast to the surfactant- 

ree interface of the bubble, this layer suppresses the interface mo- 

ion. Stagnant caps at bubble interfaces are encountered during 

he rise of bubbles through contaminated systems (with numer- 

us surfactants). Surfactants adsorb to the bubble interface and 

ue to motion of the interface are convected to the bottom of 

 rising bubble, where they form a stagnant cap. This stagnant 

ap reduces the rise velocity of bubbles significantly because the 

hange from mobile to partially immobile interface increases the 

rag force acting on the bubble. Although there exist numerous 

odels for the formation of a stagnant cap, there is no consen- 

us on a definite model especially because measurement of sur- 

actant concentration on bubble interface is a difficult procedure 

25–27,33] . In Appendix A , we introduce a model that was pro- 

osed by Shmyrov et al. [29] and Homsy and Meiburg [31] that 

escribes the formation of a stagnation zone due to the trans- 

ort of insoluble and uncharged surfactants over the interface of 

 two-dimensional slot. Furthermore, in Section 4 we address the 

ormation of a stagnant cap on a bubble interface. For now it is 
4 
easonable to assume that the changes in surface concentration 

an be in the order of �	 ≈ 	Monolayer = 7 . 2 · 10 −6 mol / m 

2 , where

Monolayer is the surface concentration necessary to cover the bub- 

le with a layer of surfactants [29] . This leads to a Marangoni num- 

er Ma 	, 	 = 6 . 4 · 10 5 which indicates that convection is dominant 

n the transport of surfactants along the interface. 

.1.3. Electrocapillary effect 

The electrocapillary effect is a phenomenon that arises at the 

as-liquid interface, due to the presence of surface charge. Com- 

ared to the thermocapillary and solutocapillary effects, the elec- 

rocapillary effect is less understood. It is well-known that bub- 

les can carry surface charge, but the origins of this charge re- 

ain disputed [34–37] . Bashkatov et al. [11] concluded that the 

urface charge on a hydrogen bubble in a 1M H 2 SO 4 solution was 

f the order σφ = 

∂σ
∂φ

≈ 2 · 10 −3 C / m 

2 to predict the observed de- 

achment diameter with their model. They assumed that this sur- 

ace charge was distributed homogeneously over the gas-liquid in- 

erface of the bubble. On the contrary, in the simulations by Carnie 

t al. [37] surface charge was allowed to transport along the mo- 

ile interface. 

Additionally, Bateni et al. [38] and Sato et al. [39] reported a 

ositive surface charge of σφ of 10 −7 C / m 

2 . In the present work 

e use the values obtained by Bateni et al. [38] and Sato et al. 

39] . We base this choice on the fact that the proposed surface 

harge by Bashkatov et al. [11] leads to significant surface ten- 

ion variations. The position at which such surface tension vari- 

tions take place is in the wedge between the bubble and elec- 

rode. The electrocapillary effect then has a profound contribution 

o the Marangoni convection; M a T ,φ and M a 	,φ are then strongly 

egative ( −4 · 10 4 and −5 · 10 7 respectively). This implies that the 

lectrocapillary effect is the dominant capillary effect causing the 

arangoni velocity at the interface u M 

. Additionally, the electro- 

apillary Marangoni velocity u M 

points in the same direction as the 

hermocapillary effect, tangential to the bubble interface towards 

he top of the bubble. Massing et al. [2] has already convincingly 

hown that especially in the wedge between the bubble and elec- 

rode the thermocapillary effect without an electrocapillary effect 

s strong enough for the motion of the bubble interface. 

The surface charge can also change if the surfactants at the 

nterface are charged. Assuming that a positively charged surfac- 

ant remains homogeneously distributed at the bubble interface 

he surface charge leads to stronger electrocapillary convection, 

lso in the wedge mentioned above. However, Carnie et al. [37] re- 

orted that surface charge of surfactants can be inhomogeneously 

istributed, which further complicates the problem. 

Johnson [40] introduced an electrocapillary Marangoni number 

o estimate the importance of surface tension induced convection 

o the formation of a potential field. However, we assume that 

here is electroneutrality in the electrolyte and therefore there is 

o velocity component in the equation for computing the poten- 

ial φ. In other words the electrocapillary effect is present but can 

nly influence the distribution of temperature and surfactants. 
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Table 2 

Table of geometrical parameters. 

Element symbol value 

domain radius R 5 · 10 −3 m 

domain height H 5 · 10 −3 m 

experimental domain height H exp 45 · 10 −3 m 

electrode height H el 5 · 10 −3 m 

electrode radius r el 5 · 10 −5 m 

bubble radius r b 560 · 10 −6 m 

bubble diameter d b 1120 · 10 −6 m 

bubble contact radius r c 41 · 10 −6 m 

contact angle θc 4 . 2 ◦
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Fig. 1. The 2D-axisymmetric geometry of an electrogenerated hydrogen bubble at a 

Pt-electrode. At the gas-liquid interface surfactants are present that form a stagnant 

cap. The size of this stagnant cap is prescribed by the stagnation angle θs . 

p

s

i

T

w  

e

θ  

s

i

p

W

g  

s

o

h

T

s

t

W

f  

s

M

d  

b  

h

t

o

q

b

b

.2. Combined Marangoni effects 

As mentioned before, Marangoni convection often has a com- 

ination of origins. To assess which of those are dominant we 

nvestigate the derivative of surface tension to variable ξ multi- 

lied by the respective change of variable ξ along the bubble inter- 

ace, σξ�ξ . We also deconstruct the contributions of the thermo- 

oluto- and electrocapillary effect to the combined Marangoni 

umbers Ma T , 
∑ 

ξ and Ma 	, 
∑ 

ξ , where the summation symbol in- 

icates that we sum add up all three capillary effects. Based on 

his deconstruction we can ignore the influence of the electrocap- 

llary effect because of its relative insignificance to all Marangoni 

umbers, see Table 1 where M a ζ ,φ << M a ζ , 	 and M a ζ ,T . On the

ontrary, the thermo- and solutocapillary effect are dominant in 

stablishing a temperature and surfactant distribution. Therefore, 

hese two capillary effects should be considered in the describing 

quations. 

. Bubble with prescribed stagnation point 

The work of Massing et al. [2] convincingly demonstrates the 

mportance of the thermocapillary effect near the bubble foot. The 

emperature along the bubble matched the experimental results. 

owever, the model fails to reach a quantitative agreement on the 

elocity in electrolyte outside the wedge between bubble and elec- 

rode. We argue that this agreement can be obtained when we as- 

ume that there is a stagnant cap on top of the electrogenerated 

ubble. In this section, we introduce a numerical model that simu- 

ates Marangoni convection around a bubble with stagnant cap. In 

aragraph 3.1 , we define the case and the geometry. In paragraph 

.2 , we introduce the governing equations. In paragraph 3.3 , we 

escribe the numerical method used for solving these equations 

nd discuss its accuracy. Finally, in paragraph 3.4 the results of 

imulated Marangoni flow with a prescribed stagnation point are 

iscussed. 

.1. Case definition 

The geometry is based on the experimental setup used by 

assing et al. [2] . In this experiment the flow around a growing 

ubble generated on a microelectrode was studied. Massing et al. 

2] also simulated the flow around this bubble, in a late stage 

f the growth cycle. In these simulations they used a fixed bub- 

le size. The flow was simulated around this non-growing bub- 

le fixed to a microelectrode with a contact angle of θc = 4 . 2 ◦,
ee Fig. 1 . The numerical setup consisted of a Pt-microelectrode of 

 el = 50 μm radius of which r c = 41 μm is in contact with the hy-

rogen bubble, which has a radius r b = 560 μm (bubble diameter 

 b = 1120 μm ). This is the average radius in the later stage of the

rowth cycle in the experiment, at time 0 . 75 τb to 0 . 85 τb , where

b = 4 . 2 s is the time of one growth cycle. The anode is located

ver the full width of the top of the electrolyte domain. In Table 2

ther specifications of the geometry are listed. The simulations are 
5 
erformed on a 2D-axisymmetric grid. This allows us to reduce the 

imulation time of the problem significantly. 

The novelty of this geometry in comparison with that of Mass- 

ng et al. [2] is the stagnant cap present on the bubble interface. 

he size of this stagnant cap is defined by the stagnation angle θs , 

hich in Fig. 1 is 90 ◦. This implies that half of the bubble is cov-

red in surfactants. In the special cases where the stagnation angle 

s = 4 . 2 ◦ or 180 ◦ the entire interface of the bubble is covered with

urfactants or the case is identical to the one simulated by Mass- 

ng et al. [2] . The boundary conditions that are enforced on the 

rescribed stagnant cap are introduced in paragraph 3.2.4 . 

In this paragraph we discuss the simulation assumptions made. 

hen the bubble was d b = 1 . 120 mm in the experiment, the 

rowth rate of the bubble d d b / dt ≈ 0 . 166 mm /s, which is much

maller than the measured Marangoni velocity at the lower half 

f the bubble and smaller than the Marangoni velocity at the top 

alf of the bubble, at least there where the velocity was measured. 

herefore, we conclude that the growth rate of the bubble is in- 

ignificant for development of the flow field except perhaps near 

he top of the bubble where no experimental data is available. 

e further illustrate this by comparing the characteristic timescale 

or bubble growth in the experiment t exp , growth = d b / ( 
d d b 
dt 

) ≈ 6 . 7

 with the time scales for the velocity profiles introduced by 

arangoni convection close to the bubble: t exp , Marangoni (θ < 90 ◦) = 

 b /u M 

= 0 . 11 s ( u M 

≈ 10 mm / s ) for the bottom half of the bub-

le and t exp , Marangoni (θ > 90 ◦) = 1 . 1 s ( u M 

≈ 1 mm / s ) for the top

alf of the bubble. Because we observe t exp , Marangoni < t exp , growth 

he flow field will develop quickly compared to the growth rate 

f the bubble. In other words the flow field close to the bubble is 

uasi steady around t/τb = 0 . 8 . This justifies neglecting the bub- 

le growth rate observed in the experiment and the use of a fixed 

ubble size in our simulations [2] . 
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Table 3 

List of hydrogen and electrolyte constants [2] . 

Symbol Discription Hydrogen Electrolyte Pt-electrode Quartz glass Copper 

ρ [ kg / m 

3 ] Density 0.09 1000 21450 2201 8700 

μ [ kg / s · m ] Dynamic viscosity 0 . 88 · 10 −5 1 . 002 · 10 −3 

ν [ m 

2 / s ] Kinematic viscosity 9 . 77 · 10 −5 1 . 002 · 10 −6 

c p [ J / kg · K ] Heat capacity 14320 4182 130 1052 385 

κ [ J / kg · K · s ] Thermal conductivity 0.186 0.58 72 1.38 400 

D T [ m 

2 / s ] Thermal diffusivity 1 . 44 · 10 −4 1 . 39 · 10 −7 

κel [ S/m ] Electric conductivity 40 

σ0 [ kg / s 2 ] Surface Tension 0.072 
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Close to the bubble the same convective timescales apply for 

he temperature field. So we can conclude that the temperature 

lose to the bubble is also quasi steady compared to the growth of 

ubble. Far away from the bubble where there is no Marangoni 

ow, the diffusive timescale is dominant and this timescale is 

arger than the time scale of the bubble growth. Therefore far away 

rom the bubble we cannot simulate the temperature profile accu- 

ately. However, most of the generated heat escapes the domain 

ia the micro electrode and copper element. Therefore, we expect 

hat the temperature far away from the bubble (close to the an- 

de) does not influence the temperature close to the bubble. For 

he same reason we can therefore reduce the height of the do- 

ain to H = 5 · 10 −3 m which is sufficiently high to capture the

ow phenomena close to the bubble. 

.1.1. Case specific details 

During the experiments, a 1 M H 2 SO 4 electrolyte solution was 

sed and a constant Faradic current of −2 . 95 mA was maintained 

t a constant voltage, which is in accordance with the measured 

urrent in this part of the bubble cycle [2] . In our simulations, a

imilar current of −2 . 98 mA was maintained for a potential dif- 

erence of −4 . 45 V between anode and cathode. At the electrolyte 

uartz interface and the sidewall r = R the normal derivative of φ
s set to zero. 

In determining the temperature throughout the domain we use 

he same ρ, c p and D T as Massing et al. [2] which are mentioned

n Table 3 . The Péclet number inside the bubble is Pe ≈ 0 . 1 imply-

ng that diffusive heat transport is dominant inside the H 2 bubble 

2] . Therefore, we neglect the convective term inside the H 2 bub- 

le, such that the bubble is treated as a solid part of the domain. 

.2. Governing equations 

To determine the Marangoni flow around the bubble solving the 

quations for potential, temperature and flow velocity is necessary. 

he equations and boundary conditions that determine the solu- 

ion are introduced in the following paragraphs. 

.2.1. Primary current distribution 

The primary current density distribution 

→ 

j in the electrolyte is 

omputed from the gradient of the potential, 

 

j = κel ∇φ, (7) 

here κel is the electric conductivity. The potential distribution φ
n the geometry is computed from the Laplace equation: 

 

2 φ = 0 . (8) 

.2.2. Heat transfer 

As Massing et al. [2] argued, diffusive transport is dominant in- 

ide the H 2 bubble and we can therefore neglect convection in this 

omain. The temperature distribution T (r, z, t) is governed by 

c p 

(
∂T 

∂t 
+ 

→ 

u 

·∇T 

)
= κ∇ 

2 T + Q, (9) 
6 
here 
→ 

u 

, ρ, c p , κ, Q are the velocity, the density, heat capacity, 

hermal conductivity and heat source respectively. 

It is well known that electrochemical heating of the electrolyte 

ccurs near electrodes. This heating is especially pronounced when 

he local current density 
→ 

j is high. To compute the electrochemical 

eating Ohm’s law is used. The corresponding heat source in the 

lectrolyte is then 

 = | → 

j | 2 /κel . (10) 

n the bubble and in the solid parts of the domain Q = 0 is as-

umed. 

We use the same boundary conditions as Massing et al. [2] did; 

 = 293 . 15 K at the bottom (the horizontal exterior walls of the 

opper and quartz glass), all other exterior walls are insulating. 

herefore, heat inside the domain will not increase indefinitely be- 

ause the heat created due to Ohmic heating of the electrolyte is 

llowed to diffuse out of the domain through the horizontal exte- 

ior walls of the copper and quartz glass elements. 

.2.3. Laminar flow 

To determine the flow velocity 
→ 

u 

of the electrolyte around the 

ubble the transient Navier-Stokes equations are solved, 

· → 

u 

= 0 (11) 

nd ( 

∂ 
→ 

u 

∂t 
+ 

→ 

u 

·∇ 

→ 

u 

) 

= −∇(p − p ref ) + μ∇ 

2 → 

u 

, (12) 

here μ, p and p ref are the dynamic viscosity, the pressure and the 

eference pressure in point A (see Fig. 1 ). At the bubble interface 

he normal component of the velocity vanishes and the tangential 

omponent is determined by the boundary conditions specified in 

he next paragraph. At all other boundaries except for the symme- 

ry axis the no-slip boundary condition is enforced 

→ 

u 

= 0 . 

.2.4. Bubble with prescribed stagnant cap 

In case a prescribed stagnant cap is assumed, the bubble inter- 

ace is split into a mobile region (free of surfactants) and an im- 

obile region (covered with surfactants). At the mobile part of the 

nterface the tangential stress is determined by the thermocapillary 

ffect 

˜ 
 

2 ∂ 

∂ ̃  r 

(
u θ

˜ r 

)
= −σT 

μ

∂T 

∂θ
for θc ≤ θ ≤ θs , (13) 

here θc is the contact angle and θs the stagnation angle. At the 

mmobile interface the tangential stress is prescribed to be zero: 

˜ 
 

2 ∂ 

∂ ̃  r 

(
u θ

˜ r 

)
= 0 for θs < θ ≤ π, (14) 

here ˜ r = 

√ 

r 2 + ̃  z 2 with ˜ z = z b − z and z b = 558 . 5 μm at the bub-

le center, and θ = arccos ( ̃ z / ̃ r ) are spherical coordinates. u θ is the

angential velocity at the bubble interface. At angles θc ≤ θ ≤ θs , 
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Fig. 2. Grid and time convergence studies, (a) The absolute velocity at a distance of 5 μm from the bubble interface as a function of θ for different number of edge elements 

N at the bubble interface. (b) Convergence of the absolute velocity profile at a distance of 5 μm from the bubble interface for simulation times t = 0 . 5 , 1 , 3 , 10 s . 
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e assume that the stress at the interface is zero because the ther- 

ocapillary effect is suppressed by the presences of surfactants. 

he motion of the interface is therefore no longer determined by 

 temperature gradient. In other words, thermo- and solutocapil- 

ary effects com pete with each other resulting in zero stress on the 

tagnant cap. In Section 4 this competition is addressed in more 

etail. 

From the experimental measurements performed by Massing 

t al. [2] the stagnation angle can be estimated, since we expect 

he interface motion to diminish at angles θs < θ ≤ π . The stagna- 

ion angle observed from these experiments is θs ≈ 50 ◦ to 70 ◦. 

.3. Numerical method 

The aforementioned set of governing partial differential equa- 

ions is solved using a finite element method implemented in 

OMSOL® Multiphysics version 5.5 for spatial discretization [41] . 

he backward Euler scheme is used for time discretization. In this 

aragraph we provide a verification of the implemented numeri- 

al method by means of comparison to aforementioned numerical 

esults of Massing et al. [2] and a grid convergence study. 

To produce an accurate solution to the set of equations, we re- 

uire the solution to be independent of the number of grid el- 

ments. At the same time we strive to limit the number a grid 

lements to reduce simulation time. We inspect the accuracy of 

he solution by considering the absolute velocity | → 

u 

| in the vicin- 

ty of the bubble (5 μm from the interface), because here gra- 

ients in temperature, potential and velocity are largest. Fig. 2 a 

hows the results of the grid refinement study, and we conclude 

hat N = 10 0 0 is sufficiently large for a grid independent solution 

n the scale of the figure. We also observe that there is a good 

atch with the numerical data from Massing et al. [2] for the 

ower half of the bubble. In the top half of the bubble small dif-

erences are observed, those are created by differences in mesh 

nd simulation time. We performed transient simulations similar 

o those performed by Massing et al. [2] . The time in these sim-

lations is denoted by t . Note that the transient behavior in the 

imulation cannot be compared to the transient behavior in the 

xperiment i.e. t � = t exp and t = 0 does not correspond to the time

t which the bubble diameter is zero. Instead, t = 0 corresponds 

o the starting conditions of the simulation which are fixed bubble 

ize, constant temperature throughout the domain and zero veloc- 

ty. The results from Massing et al. [2] were obtained for simula- 

ions times of t = 1 s . They also performed simulations with a sim-

lation time of t = 6 s , and they concluded that the temperature
7 
rofile did not change. For the velocity profile, the transient in the 

imulation takes longer, specifically at the top of the bubble where 

e had already indicated that the Marangoni velocity is up to one 

rder of magnitude smaller. In Fig. 2 b the temporal evolution of 

he velocity profile along the bubble is plotted. The simulation are 

one for N = 10 0 0 and t = [0 . 5 , 1 , 3 , 10] s where we indicate that

t t = 3 s the solution does not change significantly anymore. The 

ifference between simulations of t = 1 and 3 s is small and it is 

ifficult to conclude which of the two is the best compared to the 

xperiment as the differences clearly occur in the top half of the 

ubble where in the experiment the growth of the bubble might 

ave had a small effect on the flow field. In the rest of this work,

 = 10 0 0 is used and the simulation time is set to t = 3 s unless

entioned otherwise. 

.4. Results 

In this subsection we present the simulation results of the sim- 

le stagnant cap model introduced in Section 3 . In Fig. 4 the simu-

ated velocity profiles at a distance of 5 and 35 μm from the bub- 

le are compared to the experimental result by Massing et al. [2] . 

ue to the stagnant cap on at least the top half of the bubble sur-

ace, the profiles converged more rapidly in these cases, so that 

 simulation time of 1 s was sufficient. The results show a range 

f stagnation angles θs , including θs = 180 ( i.e. no stagnant cap). 

t the stagnation point, a sharp transition of the boundary condi- 

ion is applied, as shown in Eqs. (13) and (14) . The bottom part of

he bubble the interface is surfactant-free and thus only the ther- 

ocapillary effect applies there. The surfactants reside on the top 

f the bubble interface (the cap). There, they counterbalance the 

hermocapillary effect and the total stress at the interface reduces 

o zero. 

Like observed by Massing et al. [2] the simulated temperature 

rofile agrees well with the experimental measurements of the 

emperature, see Fig. 3 . Based on Fig. 4 we can conclude that the 

ddition of a stagnant cap with an a priori defined stagnation an- 

le improves the agreement with experimental measurements of 

he velocity. It becomes evident that a stagnant cap of θs ≈ 55 ◦

s the best choice to predict the Marangoni flow around the bub- 

le in this experiment [2] . Because of the remarkable agreement 

etween experiment and simulation, a stagnant cap was likely 

resent at the bubble interface in the experiments. Subsequently, 

 stagnant cap eludes to the presence of surfactants at the inter- 

ace even-though surfactants were not mentioned in the work of 

assing et al. [2] . The electrolyte in the experiment might have 
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Fig. 3. Comparison of simulated temperature at a distance of 5 μm along the bub- 

ble interface for bubbles with stagnant cap angles θs = [30 , 50 , 55 , 60 , 90 ◦] with the 

experimental measurements of Massing et al. [2] . 
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een slightly contaminated by surfactants. In Section 4 , we will re- 

isit this topic and include a surfactant transport at the bubble in- 

erface to account for the formation of a stagnant cap, which is a 

ynamic process. In that model, it is not necessary to prescribe a 

tagnation angle θs . Instead we can prescribe an initial concentra- 

ion of surfactants on the interface, similar to what Shmyrov et al. 

29] propose. 

.4.1. Marangoni force 

The thermocapillary effect forces the motion of the gas-liquid 

nterface. This motion exerts viscous stress on the fluid resulting 

n vortices forming around the bubble. This viscous stress gives rise 

o a force acting on the bubble. By integrating the stresses over the 

ubble interface this Marangoni force on the bubble can be calcu- 

ated. Massing et al. [2] did this by integrating the shear stress over 

he interface. However, they did not include the non-viscous part 

f the stress tensor (the pressure part of the stress tensor). At first 

ight, this seemed a reasonable assumption because the pressure 

ppears to be constant along the bubble interface. However, while 

nvestigating electrodes of different sizes, Hossain et al. [12] found 

 small second vortex in the wedge area between electrode and 

ubble. This second vortex is created because a temperature ’hot 
ig. 4. The absolute velocity | → 

u | at a distance of 5 and 35 μm from the bubble interfac

he experimental data by Massing et al. [2] is added to the plot. 

8 
pot’ is located above the electrode corner on the bubble interface, 

ee Fig. 5 a. The location of this ’hot spot’ is consistent with the 

eometrical equation shown in fig. 6 in the work of Hossain et al. 

12] (the temperature ’hot spot’ is found at an angle θm 

≈ 6 ◦ for 

= r b /r el = 11 . 2 ). 

Starting from this temperature ’hot spot’ the temperature de- 

reases along the bubble interface in two directions. This tempera- 

ure gradient along the interface drives the thermocapillary motion 

f the interface. Consequently, the interface motion leads to the 

otion of liquid towards the contact point. Subsequently, the liq- 

id is forced into this small wedge and it accumulates there lead- 

ng to an increased pressure, see Fig. 5 b. Because the fluid cannot 

ccumulate indefinitely in the wedge area, it starts flowing away 

rom the high pressure along the electrode surface, as can be seen 

rom the flow pattern in Fig. 5 b. Consequently, a re-circulation area 

r vortex is observed at the bubble foot. Important for the calcu- 

ation of the complete hydrodynamic force on the bubble is that 

e take the observed variations in pressure into consideration. In- 

erestingly, the non-viscous part of the stress tensor amounts to 

 significant part of the hydrodynamic force, F H . The z-component 

f the force on the bubble excluding buoyancy and surface tension 

ffects is defined by 

 H = 

∫ ∫ 
S 1 

((
−(p l − p ref ) I + 

¯̄τ
)
· → 

n 

)
· → 

e ˜ z dS, (15) 

here S 1 is the bubble surface, p l is the liquid pressure at the in-

erface, p ref = 101325 Pa is the reference pressure, and 

¯̄τ is the vis- 

ous part of the stress tensor. F H is the formal force that is due to

he motion of the liquid. Since all motion in the present case is 

ue to the Marangoni effect, we call F H = F M 

the Marangoni force 

xerted on the bubble. It is remarked that F H does not include the 

uoyancy force due to gravity. Our simulations were run for zero 

ravity and constant p ref . Alternatively, the simulations can be run 

ith gravity switched on and then the hydrostatic pressure should 

e included into p ref in Eq. (15) . 

Massing et al. [2] reported a Marangoni force of F M 

= −0 . 79 μN

etarding the bubble from detachment from the electrode surface. 

owever, they neglected the contribution of the pressure and the 

iagonal component of the viscous stress tensor. Note that when 

e include the pressure contribution (p l − p ref ) is predominantly 

ero along the top half of the bubble and negative along the bot- 

om half when integrated over the bubble interface. Additionally, 

he normal vector and unit vector in the bottom half are pointing 

n opposite direction. Therefore the pressure part of F H is negative, 

ike the viscous part of F H . In our definition of the Marangoni force, 
e versus the angle θ for prescribed stagnation angles θs = [30 , 50 , 55 , 60 , 90 ◦] . Also 
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Fig. 5. (a) The temperature and (b) the relative pressure (p − p ref ) inside the electrolyte in the wedge between electrode and bubble. The arrows indicate the direction of 

the electrolyte velocity. These simulation results are obtained from a bubble with radius r b = 560 μm 
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Fig. 6. Vertical forces acting on a hydrogen bubble on an electrode as a function of 

radius r b for a stagnation angle θs = 55 ◦ . 
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he force amounts to F H = −3 . 68 μN and the non-viscous contribu-

ion amounts to 86 . 5% . Before investigating the significance of the 

arangoni force we will further introduce all the relevant forces 

cting on the bubble. 

.5. Bubble detachment forces 

The Marangoni force has been associated with an increase in 

ubble detachment diameter for electrogenerated bubbles [2,11–

3,20] . Interestingly, only Granados Mendoza [19] , Baczyzmalski 

t al. [20] , Duhar and Colin [42] addressed the other forces that are

cting on the bubble. The resultant force in the vertical z-direction 

cting on an electrogenerated hydrogen bubble is given by 

 res = 

∑ 

F = F B + F H + F s + F cp , (16) 

here F B is the buoyancy force, F H is the hydrodynamic force (see 

q. (15) ), F s is the surface tension force and finally F cp is the contact

ressure force. The z-components of these forces are given by 

 B = 

4 

3 

π r 3 b ( ρg − ρl ) 
→ 

g · → 

e ˜ z , (17) 

 s = 

∫ 2 π

0 

r c σ
→ 

t (φ) · → 

e ˜ z dφ = −2 π r c σ sin (θc ) , (18) 

 cp = 

∫ ∫ 
S 2 

(
( p l − p g ) 

→ 

n 

)
· → 

e ˜ z = π r 2 c 

2 σ

r b 
, (19) 

here ρg , p g , ρl , p l , 
→ 

g , r c , S 2 and θc are the gas density and pres-

ure inside the bubble, the liquid density and pressure, the grav- 

tational acceleration vector, the contact radius, the contact area 

nd the contact angle, respectively. F s and F H are the main forces 

hat keep the bubble attached to the surface, whereas the buoy- 

ncy force and contact pressure force pull the bubble from the 

urface. We computed the Marangoni force for a range of bubble 

izes r b , Fig. 6 . It should be noted that for small bubbles with a

ubble radius r b < 360 μm the assumption of a fixed bubble size 

s less realistic. In all simulations, the bubble shape was assumed 

o be spherical, and the contact line pinned to the same position at 

r, z) = (41 , 0) μm . The contact angle then increases for decreasing

ubble radii. A stagnation angle θs = 55 ◦ was used in these sim- 

lations. In Fig. 6 also the resultant force F res is displayed. Small 

ubbles ( r < 430 μm ) are pushed towards the electrode ( F res < 0 ).
b 

9 
arge bubbles ( r b > 430 μm ) with θc = 4 . 8 ◦ should detach from

he electrode, which is not observed in the experiments by Mass- 

ng et al. [2] . In their experiments detachment occurs at a bubble 

adius r b ≈ 650 μm . We hypothesize that detachment does not oc- 

ur between bubble radii 430 μm < r b ≤ 650 μm because the con- 

act angle θc , that is pinned at r c , starts to increase as a neck starts

o form between bubble and electrode. An increase in contact an- 

le will lead to an increase in the surface tension force F s , that

ill retard the bubble from detaching. Theoretically this increase 

n contact angle could continue until θc = 90 ◦ where the surface 

ension force F s is maximum. In reality, the detachment appar- 

ntly occurs before this contact angle is reached, which might be 

ue to an interfacial instability onsetting before θc = 90 ◦. Because 

he contact angle at the moment of detachment was not mea- 

ured, we compute the contact angle for 430 μm < r b < 650 μm

rom the requirement F res = 0 . The contact angle then increases to 

c = 28 ◦ at the experimentally observed departure radius of the 

ubble r dep ≈ 650 μm . We note that our reasoning implies that, 

ery close to the bubble foot, the assumption of a spherical bubble 

oes not hold for r b > 430 μm . 

Therefore, it is advised that in the future the bubble is also sim- 

lated with a growing and deformable interface. This could influ- 
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Fig. 7. Electrogenerated hydrogen bubble covered with surfactants. Along the in- 

terface there exist three phases: the surfactant-free, the gaseous phase depicted by 

orange surfactants and the liquid expanded phase depicted by yellow surfactants. 
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nce the results when detachment radius surpasses r b > 430 μm . 

his deformation could influence the velocity profile in the wedge 

rea and it could influence the pressure distribution. Furthermore, 

ashkatov et al. [11] observed the formation of a carpet of mi- 

robubbles beneath the large detaching bubble, which could also 

nfluence the detachment and force balance significantly. Address- 

ng these problems, in the form of simulations with a growing and 

eformable bubble interface, is a pivotal step towards understand- 

ng bubble detachment. 

. Bubble with dynamic stagnation point 

In Section 3 a simplified model with a prescribed stagnation 

ngle θs was used to simulate Marangoni convection around the 

lectrogenerated bubble. The a priori assumption of a stagnation 

ngle beyond which the thermocapillary stress is counterbalanced 

s ad hoc . Modeling surfactant transport and the associated solu- 

ocapillary effect on the bubble surface is a more extensive way 

o describe the prevailing surface dynamics. We investigate this 

pproach for an insoluble surfactant, so that there is no adsorp- 

ion and desorption of surfactants. The only input parameters that 

re required are the average surfactant concentration, the diffusion 

oefficient of the surfactants and the partial derivative of surface 

ension to surfactant concentration σ	 . In this section we assume 

hat the surfactant was oleic acid. This choice is favourable because 

his surfactant is insoluble and the dependency of surface tension 

o surfactant concentration is well documented [29] . We illustrate 

hat the competition between thermo- and solutocapillary convec- 

ion is responsible for the formation of a stagnant cap and thus 

as a significant influence on the Marangoni convection around the 

ubble. In Section Appendix A a benchmark study is performed to 

alidate the implemented method. 

.1. Theory 

In addition to the set of equations introduced in Section 3.2 , an 

quation for the transport of surfactant along the bubble interface 

s needed. The surfactant transport equation is given by 

∂	

∂t 
+ 

∂u ˜ r 	

∂ ̃  r 
+ 

∂u ˜ z 	

∂ ̃  z 
+ 

u ˜ r 	

˜ r 
= D 	

(
∂ 2 	

∂ ̃  r 2 
+ 

∂ 2 	

∂ ̃  z 2 
+ 

1 

˜ r 

∂	

∂ ̃  r 

)
, (20) 

here D 	 = 10 −9 m 

2 / s is the diffusion coefficient of the surfac-

ants on the interface. Initially, at t = 0 in the simulation the sur- 

actant molecules will be homogeneously distributed such that the 

nitial concentration everywhere on the interface is 	0 . 

.2. Surfactant phases 

When the surfactants are transported along the interface a va- 

iety of surfactant phases can be observed when a stagnant cap 

orms. Shmyrov et al. [29] introduced the surfactant-free state, 

aseous state, liquid-expanded state and condensed state. When 

urfactants are transported to the top of the bubble they are 

ressed closer together, see Fig. 7 . When compression on the 

op of the bubble occurs, the mutual interaction between surfac- 

ants changes. For oleic acid the mutual interaction between the 

olecules is repulsive, and therefore the mutual repulsion be- 

ween the surfactants becomes stronger. This increase in mutual 

nteraction force is often referred to as surface pressure �. The 

ntroduction of surfactant phases aids in modeling this increase 

n surface pressure as is demonstrated in the work of Shmyrov 

t al. [29] . In the surfactant-free state, the surface pressure is zero 

 i.e. the surface tension is not reduced by present surfactants). On 

he surfactant-free interface, the only capillary effect present is 

he thermocapillary effect. In the gaseous state, the surface pres- 

ure � ∝ σ 	 and the surfactants reduce the surface tension. In 
	

10 
he gaseous phase, both the thermo- and solutocapillary effect 

re present. More interestingly, they balance each other as surfac- 

ant and temperature gradients have opposite signs. The surfac- 

ant concentration increases along the interface. This increase in 

continues up to the point where the surfactants are so densely 

acked that their mutual surfactant repulsion increases. We can 

dentify this point with a phase transition surface concentration 

∗ = 0 . 38 · 	Monolayer = 2 . 731 · 10 −6 mol / m 

2 , where the interface

nters the liquid-expanded phase [29] . In the liquid-expanded case 

he surface pressure � ∝ (k + 1) σ		, here k is the factor by which

he repulsive force increased. In the case of oleic acid this fac- 

or k = 10 . The condensed phase is a purely theoretical state be- 

ause the mutual repulsion between surfactants in this phase goes 

o infinity. Shmyrov et al. [29] found that the stagnation point in 

 Hele-Shaw slot coincided with the transition from a surfactant- 

ree to a gaseous surfactant phase. For further information on the 

urfactant, the reader is referred to the work of Shmyrov et al. 

29] and to Appendix A . We hypothesize that a similar stagnation 

ngle θs will coincide with the transition from surfactant-free to 

aseous phase on the bubble interface. 

To implement both thermo- and solutocapillary effect we pre- 

cribe a stress condition on the bubble interface. Similar to the im- 

lementation of the thermocapillary effect the solutocapillary ef- 

ect is implemented via a tangential stress at the interface of the 

ubble. Taking into account the various states that occur in the sur- 

actant layer at the bubble interface, the stress is given by 

˜ 
 

2 ∂ 

∂ ̃  r 

(
u θ

˜ r 

)
= −σT 

μ

∂T 

∂θ
− (1 + k f ) · σ	

μ

∂	

∂θ
, (21) 

ith 

f = 1 + erf 

(
	/ 	∗ − 1 

δ

)
. (22) 

ere δ = 0 . 05 is the width of the slope in the error function that

ccounts for the transition from the gaseous state to the liquid- 

xpanded state that occurs when 	 exceeds 	∗ [29] . Note here that 

f = 0 as long as 	 < 	∗. 
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Fig. 8. Parametric study of the absolute velocity | → 

u | at a distance of (a) 5 and (b) 35 μm from the bubble interface as a function of angle θ . The initial surfactant concen- 

tration was varied between 	0 = 0 and 	0 = 	∗, and the partial derivative of surface tension to surfactant surface concentration is σ	 = −78 . 9 N/ mol m 

2 . 
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.3. Numerical settings 

Eq. (20) does not convergence easily. Stability issues arise from 

 low surfactant diffusion coefficient D 	 . In pre-modelled transport 

olvers often stabilization methods are used to artificially increase 

iffusion. We manually implemented an upwind type artificial dif- 

usion 

 a = D 	 + 

1 

2 

(| u ˜ r | + | u ˜ z | ) h, (23)

here h = 5 · 10 −5 m is the representative grid size, which reduces 

f the grid is refined. For infinitely fine grids, D a → D 	 . The second-

erm on the right-hand side is small if the velocity is small, i.e. 

here where the physical diffusion is important and convection 

nimportant. The simulations were performed until 3 s, and the 

elocity, temperature and surfactant concentration profiles shown 

re converged. 

It should be clarified here that the average surface concentra- 

ion 	0 of insoluble surfactants is very large in the initial stage of 

he bubble cycle and rapidly decreasing afterwards because of the 

ubble growth. However, in the final stages of the bubble growth 

he change in bubble radius and therefore the change in aver- 

ge surface concentration is small. Therefore, in our simulations 

0 refers to the average surface concentration for fixed radius r b . 

n the initial stages of the growth cycle the solutocapillary effect 

ould be more dominant and would suppress interface motion. In 

his work our conclusions are limited to the distribution of surfac- 

ants for a fixed bubble size with a diameter that corresponds to 

he final stages of the bubble cycle. The evolution of the surfactant 

istribution during the bubble growth is outside the scope of this 

ork. 

.4. Results 

We compare the velocity and temperature profiles to the pro- 

les measured by Massing et al. [2] . The surfactant concentration 

s used to determine the stagnation angle θs at the bubble inter- 

ace. Fig. 8 shows the velocity distributions at 5 and 35 μm from 

he bubble. One can clearly observe a reduced velocity in the top 

art of the bubble, indicating a stagnation of the interface. It is 

lso clear that by increasing the initial concentration at the bubble 

nterface the stagnant cap will grow larger. We can recognize this 

tagnant cap by identifying where | → 

u 

| ≈ 0 . It is evident that the
11 
resence of surfactants does not significantly influence the veloc- 

ty at the bubble foot θ < 20 ◦. Higher along the bubble surface the 

urfactants have stronger reducing effect on the velocity, as sur- 

ace motion is suppressed by the solutocapillary effect. An initial 

oncentration 	0 = 0 . 5	∗ shows the best agreement with experi- 

ents. 

We should mention that there is no certainty about which type 

f surfactant was present in the experiment. These results illus- 

rate the importance of a small 	0 ≤ 10 −6 mol / m 

2 surface con- 

entration of insoluble oleic acid molecules, as they clearly form 

 stagnant cap. The material properties that would change in case 

e are dealing with other insoluble surfactants are the mono- 

ayer concentration 	∗ and the partial derivative of surface ten- 

ion to surface concentration σ	 . In Fig. 10 we have indicated how 

oubling of σ	 leads to the formation of a larger stagnant cap 

or any given initial concentration. Also, from Fig. 10 we can ob- 

erve that if we were dealing with a surfactant that has a larger 

onolayer concentration than oleic acid, the cap would become 

maller. 

Temperature variations along the bubble interface are caused 

y Ohmic heating of the electrolyte. This Ohmic heating is pro- 

ounced above the corner of the electrode, as we saw in Fig. 5 a. It

as established by Hossain et al. [12] that the position where the 

urrent density reaches its maximum is the location where Ohmic 

eating is most pronounced (a temperature ’hot spot’). Evidently, 

he temperature will be high in the wedge area between electrode 

nd bubble. This temperature ’hot spot’ will then result in two 

ortices as was already shown in the previous section, Fig. 5 a. In 

ig. 9 a, the temperature 5 μm from the bubble is plotted for the 

ynamic surfactant cap model. A good agreement with experimen- 

al measurements is obtained from the simulations for all initial 

urface concentrations 	0 . We observe that an increase in initial 

oncentration only has a slight influence on the temperature dis- 

ribution on the bubble. We observe a relatively strong decrease 

f temperature around the angle where interface becomes stag- 

ant, see inset of Fig. 9 a. This relatively strong decrease is caused 

y the transition from primarily convective to primarily diffusive 

ransport of heat. The top of the bubble is dominated by diffusive 

eat transport, while in the surfactant-free area convection domi- 

ates the transport of heat. This temperature drop is equivalent to 

he drop observed by Shmyrov et al. [29] and Homsy and Meiburg 

31] and is discussed in A.3 . Note that the temperature drop and 

ransition from surfactant-free to gaseous surfactant state do not 
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Fig. 9. (a) Parametric study of the temperature �T = T − T eq at a distance of 5 μm from the bubble interface as a function of angle θ . (b) Parametric study of the surfactant 

concentration 	 at the bubble interface as a function of angle θ . The initial surfactant concentration ranges from 	0 = 0 to 	0 = 	∗ and the derivative of the surface tension 

to surfactant surface concentration σ	 = −78 . 9 N / mol m 

2 . 

Fig. 10. The stagnation angle θs obtained from simulations with various initial sur- 

factant concentrations at the bubble interface: 	0 / 	
∗ = 0 , 0 . 1 , 0 . 3 , 0 . 5 , 0 . 7 , 0 . 9 and 
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oincide because the temperature was measured 5 μm from the 

ubble interface. 

Given the presence of surfactants on the bubble interface and a 

ecreasing temperature towards the top of the bubble, the surfac- 

ants are pushed along the interface towards the top of the bubble. 

he concentration of surfactants increases towards the top of the 

ubble, see Fig. 9 b. At the top of the bubble the surface concen-

ration 	 reaches a maximum, while at the bottom of the bubble 

he surfactants are absent. From Fig. 9 b one can obtain the stag- 

ation angle θs that corresponds to an initial concentration 	0 / 	
∗

.e. the angle at which 	0 / 	
∗ ≥ 0 . 01 . This is shown in Fig. 10 for

	 = [ −78 . 9 , −157 . 8] to indicate that a stronger surfactant will in-

rease the size of the stagnant cap on the interface i.e. the stag- 

ation angle θs decreases. Fig. 10 shows that even a small surfac- 

ant concentration 	0 / 	
∗ = 0 . 1 already forms a large stagnant cap 

 θs ≈ [90 , 80] ◦) on the bubble. Increasing the initial surface concen- 

ration leads to a larger cap i.e. lower θs . The first method showed 

hat experiments were best captured with a prescribed stagna- 

ion angle θs = 55 ◦. An initial concentration 	 / 	∗ ≈ 0 . 5 , corre-
0 

12 
ponding to θs = 57 ◦, provides a good match with experiments, see 

ig. 8 a. These results indicate that the two methods provide a good 

ualitative and quantitative agreement. 

The larger the initial concentration, the more surfactants are 

ompressed into a small surface at the top of the bubble. As a re- 

ult, at an initial concentration of 	0 / 	
∗ = 0 . 7 and 0.9 the local

oncentration 	 at the top of the bubble exceeds the phase transi- 

ion concentration 	∗. Therefore, when 	 > 	∗, the surfactants are 

n the liquid-expanded state. The surfactants can thus be brought 

nto a liquid-expanded state if there is a large initial concentra- 

ion. Another way in which the surfactants can be brought into a 

iquid-expanded state if the balance of thermo- and solutocapil- 

ary effect shifts towards stronger thermocapillary convection. We 

ill address two examples where this balance is shifted in the next 

aragraph by varying the potential applied over the electrolyte. 

.4.1. Electrolysis at various applied potentials 

Yang et al. [1] investigated the maximum velocity at 35 μm 

rom a bubble and the current density for different applied poten- 

ials. They found an increasing Marangoni velocity for an increas- 

ng applied potential. At a higher potential difference the current 

ensity increases. The higher current density results in stronger 

hmic heating of the electrolyte at the bubble interface. The tem- 

erature and temperature gradient along the bubble interface con- 

equently increase as shown in Fig. 11 a for three applied potentials. 

he temperature along the bubble interface is maximum near the 

lectrode edge at an angle θ ≈ 6 ◦. At this point we respectively 

bserve a temperatures ranging from T (�φ = −2 . 225V) ≈ 3 . 4 K to

 (�φ = −4 . 45V) ≈ 14 K to T (�φ = −8 . 9V) ≈ 54 K upon doubling

f the potential. It becomes evident that the maximum tempera- 

ure increases with a factor 4 due to the doubling of the applied 

otential. On account of a larger temperature, the thermocapil- 

ary convection on the bubble interface becomes stronger. Conse- 

uently, higher velocities are observed at the bubble interface and 

ulk, see Fig. 11 b. We also observe that the location of the stagna-

ion of the interface changed, revealing a shifted balance between 

hermo- and solutocapillary convection. This shifted stagnation an- 

le and capillary balance can also be observed in the location of 

he surfactants at the interface, see Fig. 12 . 

Shmyrov et al. [29] and Homsy and Meiburg [31] encountered 

imilar behaviour in a Hele-shaw cell. In this cell, they applied a 

inear decreasing heat flux to a flat interface covered with surfac- 
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Fig. 11. (a) The temperature T at the interface of the bubble as a function of angle θ . (b) The absolute velocity | → 

u | at the interface of the bubble as a function of angle 

θ . Three potential differences �φ have been applied to the microelectrode ( −2 . 225 V , −4 . 45 V , −8 . 9 V ). The initial surfactant concentration is 	0 = 0 . 5 · 	∗, and the partial 

derivative of surface tension to a concentration change of oleic acid is σ	 = −78 . 9 N / mol m 

2 . 

Fig. 12. The surfactant concentration at the interface of the bubble as a function of 

angle θ, simulated for three potentials �φ at the microelectrode ( −2 . 225 V −4 . 45 

V , −8 . 9 V ). The initial surfactant concentration is 	0 = 0 . 5 · 	∗, and the derivative of 

the surface tension to a concentration change of oleic acid is σ	 = −78 . 9 N / mol m 

2 . 

t

o

t

h

Q

s

o

s

c

e

b

s

t

s

c

t

t

E

w

S

s

F

l

e

d

e

w

d

w

o

i

w  

t

f

t

t

b  

l

�  

0

�

w

i  

t

�

s

t

u

w  

n

f

v b 
ants. Increasing the magnitude of this flux led to the movement 

f the stagnation point x s (the coordinate tangential to the flat in- 

erface), i.e. it reduced the stagnant area. Although, in the case of a 

ydrogen bubble on a microelectrode we encounter a heat source 

in the electrolyte instead of a heat flux through an interface, we 

till find an analogy between the two problems which is the point 

f stagnation on the interface, either x s or θs . Increasing the heat 

ource is equivalent to increasing the heat flux in the Hele-shaw 

ell and leads to a smaller stagnant cap, i.e. a larger θs . Shmyrov 

t al. [29] and Homsy and Meiburg [31] defined the elasticity num- 

er E, a dimensionless number that describes the ability of the 

urfactant layer to compress under the influence of the other in- 

erface stresses for example thermocapillary stress, electrocapillary 

tress or viscous stress exerted by the fluid on the interface. In our 

ase, the compression of surfactants at the interface is caused by 

hermocapillary stress, and we can write the elasticity number for 

he compression on the interface of the bubble as 

 b = 

σ	�	

σ �T 
, (24) 
T 

13 
here �T and �	 are variables that can be estimated beforehand. 

hmyrov et al. [29] estimated �	 ≈ 2	0 , which is a reasonable as- 

umption for low initial surfactant concentrations 	0 , see Fig. 9 b. 

or larger initial concentrations 	0 → 	∗ this assumption becomes 

ess accurate and �	 → 	0 . To estimate the temperature differ- 

nce �T along the interface we consider Eq. (9) . The temperature 

istribution in the electrolyte in the wedge between bubble and 

lectrode is determined by diffusion and convection. To determine 

hich of the two is dominant we investigate the convective and 

iffusive transfer of heat with corresponding length scales 

convective term 

diffusive term 

= 

| → 

u 

·∇T | 
| D T ∇ · ∇T | ≈

u m 

/d 1 

D T /d 2 
2 

≈ 0 . 01 , (25) 

here the d 1 ≈ 10 −2 · d is the convective length scale (the length 

f the wedge along the wall and bubble interface), d 2 ≈ 10 −3 · d

s the diffusive length scale (the width of the wedge between the 

all and the bubble interface) and u m 

≈ 0 . 02 m / s . This implies

hat the transport of heat in the electrolyte is dominated by dif- 

usion in the wedge between bubble and electrode. Consequently, 

o derive an expression for the temperature variation we neglect 

he convective term in Eq. (9) . The heat source is estimated to 

e Q = | → 

j | 2 /κel = κel (∇φ) 2 ≈ κel (�φ) 2 /d 2 3 , where d 3 ≈ d 1 is the

ength scale of the potential gradient. For a potential difference 

φ = −4 . 45 V, the simplified temperature equation, k ∇ · ∇T + Q =
 , implies the temperature difference 

T = 

κel (�φ) 2 d 2 2 

kd 2 
1 

≈ 14K , (26) 

hereas potential differences of �φ = −2 . 225 and −8 . 9 V results 

n �T ≈ 3 . 4 and 55 K . This is in agreement with the findings of

hree simulations presented in Fig. 11 a where the maximum of the 

T profile along the bubble interface is proportional to (�φ) 2 . A 

imilar proportionality is found for the velocity at the interface of 

he bubble 

 m 

≈ k 1 
σT �T 

μ
≈ k 1 

κel (�φ) 2 d 2 2 

kμd 2 
1 

, (27) 

here the proportionality factor is k 1 ≈ 0 . 01 due to the ratio of the

ormal (boundary layer thickness) and tangential (bubble circum- 

erence) length scales. In Fig. 11 b, we observe that the maximum 

elocity is indeed proportional to (�φ) 2 . The elasticity number E 
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f Eq. (24) can now be rewritten as 

 b = 

2 σ		0 kd 2 1 

σT κel (�φ) 2 d 2 
2 

, (28) 

uch that the temperature difference is eliminated from the equa- 

ion. This shows that the elasticity of the surfactant layer is 

nversely proportional to (�φ) 2 , i.e. the higher the potential 

ifference, the stronger the surfactants are compressed. Using 

q. (28) we can, before simulating the case, find the balance be- 

ween thermo- and solutocapillary effects for any initial surfac- 

ant concentration 	0 and potential difference �φ. For an ini- 

ial concentration 	0 = 0 . 5	∗ and potential difference �φ = −4 . 45 

 the elasticity number E b = 0 . 1 which indicates that the surfac-

ants are strongly compressed. In the simulation where the �φ = 

8 . 9 V , the elasticity number is E b = 0 . 025 i.e. the surfactants

re even stronger compressed. However, for a potential difference 

φ = −2 . 225 V the surfactants are less compressed as the elastic- 

ty number is E b = 0 . 4 . For very small potential differences, where

 b > 1 , the thermocapillary effect lacks strength and is unable to 

ompress the surfactants. The surfactants will maintain their ini- 

ial distribution and at the entire interface of the bubble no stress 

s applied i.e. the stagnant cap is covering the entire bubble. 

Fig. 12 shows the surfactant concentration along the bubble in- 

erface. An increased potential difference leads to a steeper surfac- 

ant distribution, i.e. the surfactant are pushed more vigorously to 

he top of the bubble. The surfactants are therefore closer packed 

ogether and the interface reaches the liquid-expanded phase. Sim- 

larly, Shmyrov et al. [29] and Homsy and Meiburg [31] concluded 

he elasticity number E determines the level of compression and 

he stagnation point at the interface. 

. Conclusions 

Our work shows that Marangoni convection near electrochemi- 

ally generated bubbles is a result of the thermo- and solutocapil- 

ary effects at the bubble interface. The competition of these capil- 

ary effects results in the formation of a stagnant cap at the top of 

he bubble. This stagnant cap suppresses interface motion in the 

op of the bubble, while the bottom part of the bubble interface 

s mobile and drives a Marangoni flow. A stagnant cap originates 

rom the compression of surfactants to a specific area on the bub- 

le interface, in our case the top. When the entire bubble interface 

s covered by surfactants a monolayer is formed. The entire inter- 

ace of the bubble in this case is stagnant. The addition of surfac- 

ant to an electrolyte solution therefore suppresses bubble inter- 

ace motion. 

Both of the two presented simulation methods that predict 

arangoni convection around the bubble are a significant improve- 

ent upon existing models. Specifically, because the simulated ve- 

ocity of the fluid agrees with the experimental measurements 

long the entire interface of the bubble. At the same time, sim- 

lated temperature distributions along the interface match accu- 

ately. 

The first method prescribes a stagnation angle θs on the bubble 

nterface. The stagnation angle can be estimated from experimen- 

al results or used as a fitting parameter. The stagnation angle that 

rovided the best match with experiments was θs = 55 ◦. This first 

ethod is not computationally demanding but requires the mea- 

urement of the stagnation angle which may vary between experi- 

ents and electrolysis conditions. 

The second method is more complicated because it also simu- 

ates the dynamic formation of a stagnant cap consisting of insolu- 

le surfactant molecules. The oleic acid molecules are compressed 

nd move to the top of the bubble, where the solutocapillary effect 

alances the thermocapillary effect and a stagnant cap is formed. 

t is found that the initial concentration of 	 ≈ 0 . 5 · 	∗ resulted in 
0 

14 
he best agreement with the experiment. Such an initial concentra- 

ion corresponds to a stagnation angle of θs = 57 ◦. 

The Marangoni flow around the hydrogen bubble resulted in 

 Marangoni force that retards bubble detachment. A newly ob- 

ained insight is that the non-viscous part of the stress tensor in- 

uences this Marangoni force significantly. The resulting increase 

n Marangoni force occurs due to a small vortex structure in 

he wedge area between the bubble foot and the electrode. The 

arangoni force was computed for several bubble radii. For the 

pecific case r b = 560 μm the Marangoni force was determined to 

e F M 

= 3 . 68 μN , almost five times larger than previous reports.

his large difference is due to the non-viscous contribution which 

ccounts for 86% of the total force. Four forces determine the bub- 

le detachment, of which the Marangoni and surface tension forces 

re the dominant retarding forces. It is suggested that above a cer- 

ain diameter, the surface tension force increases with increasing 

ubble diameter, due to the formation of a neck with an increas- 

ng contact angle. The maximum contact angle that is reached is 

c = 28 ◦. This contact angle was computed without adaptation of 

he spherical geometry of the bubble for the formation of the neck 

nd the deformation of the interface due to the pressure gener- 

ted by the Marangoni flow. Therefore it is commendable to allow 

or surface deformation in future investigations of detachment. 

This work has focused on microelectrodes and it confirms that 

 high current density above the corner of the electrode is the 

rigin of the Marangoni convection in the electrolyte. This trig- 

ers the thermocapillary flow at the bubble interface and results 

n Marangoni convection around the bubble. In our work, we ob- 

erve that the heating of the electrolyte above a microelectrode in- 

reased quadratically with the applied potential. This leads to an 

ncrease in Marangoni convection which also scales quadratically 

ith the applied potential. Maintaining a low cell voltage and lo- 

al current density in electrolysis cells is thus a method to sup- 

ress bubble interface motion. In future work, we will investigate 

f, for different sized electrodes, similar results can be obtained. 
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Fig. A.13. Hele-Shaw geometry. 
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ppendix A. Hele-Shaw slot with dynamic stagnation point 

In Section 3 we introduced Marangoni convection around a 

ubble with a prescribed stagnation angle. Although we mentioned 

hat surfactants at the gas-liquid interface form this stagnant cap, 

he surfactants are not taken into further consideration. The model 

s a rough simplification and neglects the dynamic behaviour of 

urfactants at the interface. To capture this dynamic behaviour, the 

urfactant transport along the gas-liquid interface of the bubble 

as modeled in Section 4 . The COMSOL model in Section 4 was 

nspired by the work of Shmyrov et al. [29] , who did not use

OMSOL but an in house code. For the sake of completeness and 

o build confidence in our implementation, we present the simu- 

ations we performed for the Hele-Shaw slot configuration intro- 

uced by Shmyrov et al. [29] in this Appendix. The Hele-Shaw slot 

s a simpler configuration than the case of the bubble in the elec- 

rode, because the gas-liquid interface in the Hele-Shaw slot is not 

urved but flat. In this quasi two-dimensional domain Marangoni 

onvection due to a temperature and surfactant gradients is sim- 

lated. The Hele-Shaw geometry allows for easier experimentation 

nd a multitude of theoretical en numerical simplifications to the 

avier-Stokes equations [31,43] . First we introduce the Hele-Shaw 

ase (A.1) . In paragraph A.2 we address the governing equations. In 

aragraph A.3 we explain the physics underlying the formation of 

 stagnant cap utilizing the results of a parametric studies of initial 

urfactant concentration and the elasticity number, respectively. 

1. Case definition 

The Hele-Shaw slot is a cuboid with length, height and width 

 : H : 2 d, respectively (see Fig. A.13 ). We assume that this cuboid

s narrow such that L, H >> 2 d. The cuboid is filled with a liquid,

nd is open at the top surface where there is a gas-liquid interface. 

he surface at the top of the cuboid is heated in experiments with 

 lamp. This lamp is designed to provide a linear decreasing heat 

ux from left to right at the interface. Additionally, a surface con- 

entration of surfactants is present on the gas-liquid interface. In 

his benchmark study oleic acid molecules are chosen, which are 

nsoluble and thus only exist at the gas-liquid interface of the do- 

ain. 

Given the presence of surfactants and a linear decreasing heat 

ux along the gas-liquid interface, a stagnant cap forms on the sur- 

ace of the Hele-Shaw cell. The linear heat flux is the driving force 

hat initiates motion at the interface. Due to presence of surfac- 

ants, the thermo- and solutocapillary effects are in competition. 

orth mentioning are the variety of surfactant phases observed 
15 
long the gas-liquid interface when a stagnant cap forms. Shmy- 

ov et al. [29] shows the existence of a surfactant-free, gaseous 

tate, liquid-expanded state and condensed state. As surfactants 

re pressed closer together and therefore their mutual interac- 

ion is more pronounced. For oleic acid and many other surfac- 

ants this implies that the repulsive force between the surfactant 

olecules increases, which is often referred to as surface pres- 

ure. The introduction of surfactant phases aids the modeling vari- 

tions in surface pressure [29] . Obviously, in the surfactant-free 

tate the interface does not experience any surface pressure, so 

hen the thermocapillary effect dominates. In the gaseous regime 

he surface pressure � ∝ σ		; when the surfactant is in this state 

he thermo- and solutocapillary effect balance each other. In the 

aseous state the surfactant concentration rapidly increases along 

he interface. This increase in 	 continues up to the point where 

he surfactants are so densely packed that their mutual surfac- 

ant repulsion increases, more precisely the derivative of the sur- 

ace pressure with respect to 	 strongly increases. We can iden- 

ify this point with a phase transition surface concentration 	∗ = 

 . 38 · 	Monolayer = 2 . 731 · 10 −6 mol / m 

2 , where the interface enters

he liquid-expanded phase. In the liquid-expanded case � ∝ kσ		. 

he condensed phase is purely theoretical state with a mutual re- 

ulsion between surfactants going to infinity. This repulsion dis- 

ribute the surfactants homogeneously over the interface. 

The Marangoni flow induced by thermo- and solutocapillary 

ffects are in competition. To quantify this competition Shmyrov 

t al. [29] and Homsy and Meiburg [31] introduced two dimen- 

ionless numbers: the initial concentration 	0 and the elasticity 

umber E, 

 = 

Surfactant Marangoni forces 

Thermal Marangoni forces 
= 

2 σ		0 κ

σT dA 

(A.1) 

hile Shmyrov et al. [29] used a trigonometric velocity profile in 

he shallow channel, we use the more physical parabolic velocity 

rofile also used by Bratsun and De Wit [43] . Unfortunately, we 

ould not reproduce several pre-factors of terms in the governing 

quations in Shmyrov et al. [29] , even not if we substituted the 

rigometric profile. For these reasons, our results are quantitatively 

omewhat different from those in Shmyrov et al. [29] , but the con- 

lusions remain the same. It is found that the governing equations 

or the numerical implementation by Shmyrov et al. [29] were not 

ntirely correct and therefore the following section states a set of 

quations we believe to be correct. Although we obtain the same 

ualitative conclusions as Shmyrov et al. [29] quantitative results 

re different. Furthermore, the limiting cases of complete mobile 

r immobile interface are in agreement with the theory provided 

y Shmyrov et al. [29] . 

2. governing equations 

Following the line of reasoning of Bratsun and De Wit [43] a 

arabolic velocity profile over the gap leads after averaging with 

espect to z-direction perpendicular to the plate 

 ... > = 

1 

2 d 

∫ d 

−d 

...dz, (A.2) 

o a set of two-dimensional equations spanned by x and 

 −coordinates 

· → 

u 

= 0 , (A.3) 

( 

∂ 
→ 

u 

∂t 
+ 

6 

5 

→ 

u 

·∇ 

→ 

u 

) 

= −∇ p + μ∇ 

2 → 

u 

−3 

μ

d 2 
→ 

u 

, (A.4) 

c p 

(
∂T 

∂t 
+ 

6 

5 

→ 

u 

·∇T 

)
= D T ∇ 

2 T − D T 
3 

d 2 
T , (A.5) 
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Table A.4 

List of parameters used in parametric cases 1 and 2, similar to values used by Shmyrov et al. [29] . 

Case 1: Elasticity number E Case 2: Initial concentration 	0 

Thermocapillary Marangoni number Ma T = [50 0 0 , 250 0 , 1667 , 1250 , 10 0 0] Ma T = 50 0 0 

Solutocapillary Marangoni number Ma 	 = 10 0 0 Ma 	 = 10 0 0 

Elasticity number E = [0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , 1] E = 0 . 2 

Initial concentration 	0 = 0 . 26 	0 = [0 . 26 , 0 . 52 , 0 . 78] 

Fig. A.14. Parameter study of the elasticity numbers E = [0 . 2 − 1] and initial surfactant concentration 	0 = 0 . 26 . 
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, (A.6) 

here 
→ 

u 

(x, y ) is the velocity T (x, y ) is the z-averaged tempera-

ure, and u (x ) and 	(x ) are the horizontal velocity and the surfac-

ant concentration at the interface. 

3. Results 

We performed two parametric studies: one where the elasticity 

umber E is varied and a second where the initial surface concen- 

ration of the surfactant 	0 is varied. In this work we have used 

he same values of elasticity number and initial concentration as 

n the study of Shmyrov et al. [29] . The characteristic values in the

imulations can be found in Table A.4 . 

In all simulations the Marangoni number is Ma 	 = 10 0 0 . In the

rst parametric study the strength of the thermocapillary effect 

s varied by changing the elasticity number E. This implies that 

he thermocapillary Marangoni number Ma T is varied. The results 

re shown in three figures: Figs. A.14 a, b and A.16 represent the 

imensionless-velocity of the interface v , temperature on the in- 

erface T and surfactant concentration 	. The motion of the inter- 

ace on the left hand side of the domain is strong and stagnates at 

 s (see Fig. A.14 a). This stagnation occurs when thermo- and so- 

utocapillary effects balance. The higher the elasticity number E

he larger the stagnant area of the domain becomes, and it ap- 

ears to be complete stagnant at E = 1. The transition from mobile 

o immobile interface is sharp and it corresponds to the transition 

rom surfactant-free to gaseous state of the surfactants at the in- 

erface. In Fig. A.16 we observe the surface concentration becomes 

on-zero at this stagnation point x s . As a consequence of the sharp 

nterface transition from mobile to immobile, the temperature dis- 

ribution is not linear. On the mobile part of the interface ( x < x s ),

onvection is dominant and therefore the temperature profile rela- 
16 
ively flat. On the immobile part of the interface ( x > x s ), diffusion

s dominant and therefore the temperature profile relatively steep. 

The second parametric study describes the effect of changing 

he initial surface concentration 	0 on the velocity, temperature 

nd surfactant concentration distribution. As can be seen from 

ig. A.17 the increase of initial concentration implies that a larger 

art of the interface is covered by surfactants. The surface is there- 

ore for a larger part immobile, see Fig. A.15 a. The temperature 

rofile in Fig. A.15 b also indicates that the domain is dominated 

y diffusion if the initial concentration increases. By starting with 

 high initial concentration 	0 ≈ 1 the surfactant state along the 

nterface will primarily be the liquid expanded phase. Therefore, if 

0 ≈ 1 most of the interface is immobile. 

In conclusion the velocity profiles of both parametric studies 

how strong convective flow in the surfactant-free regime. Once 

here is a phase transition to the gaseous regime, where there are 

everal surfactant molecules, there is a steep decrease of the ve- 

ocity to zero. This decrease allows for the implementation of zero 

tress boundary conditions from some position x > x s . When deal- 

ng with a bubble this stagnant cap boundary condition can then 

e applied from some angle θ > θs . This justifies the simulations 

n Section 3 . The stagnant cap that is formed depends on the com- 

etition between thermo- and solutocapillary effects. This compe- 

ition is described by the elasticity number E, and together with 

he initial concentration it determines the location of the critical 

osition for the stagnant cap x s . 
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