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Figure 5. Comparison of the L2-norm of τ12 obtained from the filtered DNS (◦) and from LES
using M1–6 (see table 1 for symbols).
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prediction of the magnitude of the individual components of the turbulent stress
tensor. If good estimates of the individual components are required, the dynamic
mixed and Clark models are preferred over the dynamic eddy-viscosity model, because
they give reasonable magnitudes of the turbulent stresses in combination with a proper
dissipative behaviour.

3.2.5. Energy spectrum

We mentioned that the increase in molecular dissipation observed for M0, M2 and
M3 was due to the presence of small scales. This is further clarified by examination
of the energy spectrum at a certain time and the time evolution of specific small-
and large-scale components of the spectrum. Figure 7 contains the streamwise kinetic
energy spectrum in the turbulent regime at t = 80, denoted by A(k), where k is the
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Figure 7. Comparison of the streamwise energy spectrum A(k) at t = 80 obtained from the filtered
DNS (◦) and from LES using M0–6 (see table 1 for symbols).

streamwise wavenumber. The spanwise energy spectrum exhibits similar features.
The filtered DNS result does not contain an inertial range displaying the −5/3-law,
because the spectrum is based on the filtered velocity and the Reynolds number is
relatively low in order to enable DNS. The spectrum of the filtered DNS is in good
agreement with those of the dynamic models M4 and M5, with a slight preference
for M5. The spectrum for the third dynamic model (M6) is too large for the highest
wavenumbers. Furthermore, we observe that the simulation with M1 is not able to
generate the desired amount of small scales. On the other hand, the contributions
of high wavenumbers are too high for M0, M2 and M3 and, consequently, these
simulations contain too many small-scale contributions. This was to be expected for
M0, having no subgrid was model, whereas this result indicates insufficient energy
dissipation of small scales for M2 and M3.

3.2.6. Spanwise vorticity in a plane

The spanwise vorticity component is often used to visualize the large-scale roller
structure in mixing layers at low Mach number. In figure 1 we have visualized the
scenario for the DNS: four rollers of spanwise vorticity at t = 20, two at t = 40 and
one at t = 80. During these pairing processes the mixing layer undergoes a transition
to turbulence and many small regions of spanwise vorticity of both signs occur. In the
LES this scenario is reproduced in nearly all cases (M0, M2–6). Only the simulation
with the Smagorinsky model M1 is an exception: instead of four rollers at t = 20
only two rollers form, indicating that the linear instability process is highly affected
by the excessive dissipation caused by M1. Figure 8 displays the spanwise vorticity
at t = 80 in the plane x3 = 0.75L3 for the filtered DNS restricted to the coarse grid
and for M0–6. First, we compare the filtered DNS result in figure 8(a) with the
unfiltered DNS result in figure 1(c), which corresponds to the same time and plane.
Obviously, the smallest structures are removed by the filtering and the peak values of
the vorticity are considerably reduced. The vorticity field of the filtered variables can
successfully be represented on the coarse grid. Furthermore, the amount of positive
spanwise vorticity in the filtered case is smaller than in the unfiltered result. We
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conclude that most structures of positive spanwise vorticity in the DNS are smaller
than the filter width ∆, thus being subgrid scales on the LES grid.

In the following, we turn to the LES predictions of M0–6 in figure 8(b–h), which
ideally should resemble the filtered DNS result in figure 8(a). The simulation with
no subgrid model (figure 8b), contains too many small-scale structures and the peak
intensities are too large. The physical dynamics of such small-scale structures clearly
cannot be correctly captured on the coarse 323-grid. On the other hand the result in
figure 8(c), corresponding to the Smagorinsky model M1, is too smooth; it contains
mainly large-scale structures. The two rollers produced at t = 20 (instead of four)
have slowly started to pair at t = 80, but no transition to smaller scales occurs and
the mixing layer is much too thin. Like M0, the similarity model (M2, figure 8d) and
gradient model (M3, figure 8e) give rise to an excessive number of small structures
and regions of positive spanwise vorticity. This is in agreement with the energy
spectra in figure 7, in which the contributions at high wavenumbers are too large.
Furthermore, the vorticity distribution of M2 is quite similar to M0, only the peak
intensities for M2 are weaker. Figure 8(e) clearly shows that M3 under-predicts the
thickness of the layer.

The vorticity obtained with the dynamic models (M4–6 in figure 8f–h) is qualita-
tively in better agreement with the filtered DNS results than the previous plots. The
peak values of the vorticity are quite well predicted and almost the correct amount of
small structure is present. With respect to the dynamic models, M5 is preferred over
M4 and M6. The thickness of the mixing layer is better predicted by M5 than by M4.
Furthermore, compared to M4 and M6, more regions of positive spanwise vorticity
are present and the negative regions are less connected, which is in agreement with
figure 8(a). Hence, M5 yields the best qualitative agreement with the filtered DNS.
As explained in §3.1 detailed agreement between LES and filtered DNS on a local
instantaneous level is not required.

The structure obtained with M5 (figure 8g) is more elongated in the x1-direction
than the filtered DNS structure in figure 8a. The spanwise vorticity of the M5 LES
in other planes at t = 80 (e.g. x3 = L), however, shows much rounder structures.
Furthermore, a more ‘rolled-up’ structure in the same plane (x3 = 0.75L) is found
at a later time (t = 85). Compared to the filtered DNS, the pairing process and the
growth of the shear layer are somewhat delayed in LES with M5 (see also figure 10).

3.2.7. Positive spanwise vorticity

The occurrence of positive spanwise vorticity in the mixing layer is related to the
transition to turbulence. Due to the mean profile, the spanwise vorticity is initially
negative in the whole domain. In the two-dimensional case such an initial condi-
tion implies that the (spanwise) vorticity remains negative throughout the simulation.
Apart from compressibility effects, only the ‘vortex-stretching’ term in the vorticity
equation can increase the global maximum of a vorticity component. Vortex stretch-
ing is essential in the generation of turbulence. From examining the evolution of
the maxima (or minima) of vorticity components it can be inferred whether this
mechanism is present in the flow.

In figure 9 the evolution of the maximum of the spanwise vorticity is shown for
the various simulations considered. The filtering strongly reduces the DNS values for
this quantity, as is observed from a comparison of figures 1(c) and 8(a), but figure
9 shows that the sudden increase of positive spanwise vorticity is also present in
the filtered DNS. The models M0, M2 and M3 over-predict this quantity, since in
these simulations there are too many small-scale contributions. On the other hand,
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Figure 9. Comparison of the spatial maximum of positive spanwise vorticity as a function of time
obtained from the filtered DNS (◦) and from LES using M0–6 (see table 1 for symbols).

in the simulation with M1 no positive spanwise vorticity is generated for a long
time, corresponding to the absence of strong vortex stretching. This result again
illustrates that the Smagorinsky model hinders the transition to turbulence. The
dynamic models M4 and M5 both give predictions which are relatively close to the
filtered DNS results, whereas the increase of positive spanwise vorticity starts too
early for M6.

3.2.8. Momentum thickness

From figure 8 we have already observed that the thickness of the mixing layer
depends on the subgrid model. This dependence is further clarified in figure 10, in
which the evolution of the momentum thickness, based on filtered variables,

δ = 1
4

∫ L/2

−L/2
〈ρ̄〉
(

1− 〈ρ̄ũ1〉
〈ρ̄〉

)(
〈ρ̄ũ1〉
〈ρ̄〉 + 1

)
dx2, (3.8)

is shown. The operator 〈.〉 represents an averaging over the homogeneous directions
x1 and x3. Since the definition of the momentum thickness employs the mean velocity
profile, tests for the momentum thickness quantify the spreading of the mean velocity
profile. Figure 9 displays a short period of laminar growth (until t = 20), followed by
a period in which the mixing layer grows considerably faster, visualizing the increased
mixing caused by turbulence.

The models M1 and M3 lead to worse predictions for the momentum thickness
than M0, indicating that with respect to this quantity LES without a subgrid model
is preferred over adopting M1 or M3. The slow growth of the momentum thickness
for M1 further establishes the observation that this model hinders the transition
to turbulence. The results for M4 are quite similar to M0, whereas the models
M2, M5 and M6 clearly yield improvement over M0 and are relatively close to the
filtered DNS result. It is remarkable that the evolution of the momentum thickness is
almost identical for M2 and M5. This indicates that for the momentum thickness the
improvement over M0 is mainly due to the similarity model, since the eddy viscosity
part of M5 does not seem to affect this quantity. Other evidence for the small effect
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Figure 10. Comparison of the momentum thickness obtained from the filtered DNS (◦) and from
LES using M0–6 (see table 1 for symbols).

of the dynamic eddy viscosity on the momentum thickness is that the curves for M0
and M4 almost coincide. The similarity model, however, already plays a role in the
early stages of transition. The time at which the increased mixing starts is relatively
early compared to M0. This behaviour is confirmed by the finding that growth rates
of linear instability waves are increased by the similarity model and are also closer
to the correct values.

3.2.9. Profiles of averaged statistics

Finally, we will compare x2-profiles of various statistics averaged in the homoge-
neous directions. These profiles will be calculated at t = 70, which is well beyond the
starting point of the mixing transition process, but just before the final pairing has
been accomplished. In the definition of these profiles, vi = ũi − 〈ρ̄ũi〉/〈ρ̄〉 denotes a
fluctuating velocity field. In figure 11(a–c) the turbulent intensities 〈ρ̄v2

i 〉1/2 are shown
for i = 1, 2, 3. The filtered DNS results demonstrate that the streamwise intensity is
somewhat larger than the normal and spanwise intensities. The turbulent intensities
are too large for M0, while they are under-predicted by M1; M3 gives reasonable
predictions for i = 2, but the peak for i = 1 is much too high, whereas the spreading
for i = 3 is too low. The remaining three models (M2, M4–6) are equally accurate;
the global discrepancies with the filtered DNS results are approximately the same,
although M6 is slightly better than the other models for i = 1. With respect to the
Reynolds stress profile −〈ρ̄v1v2〉, shown in figure 11(d), the dynamic mixed model M5
has to be preferred, since it provides the most accurate approximation of the filtered
DNS profile.

3.2.10. Summary and discussion

Table 2 summarizes the results for the subgrid models M1–6. The discrepancy
with the filtered DNS determines the quality of the result. In general, a result for a
given subgrid model is considered to be bad if its discrepancy with the filtered DNS
is larger than that between the filtered DNS and M0. If within a group of models
that provide good results denoted by ‘+’, one model performs even better than the
others, it is labelled with ‘++’. Simulations with M2 and M4–6 do give considerable
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Figure 11. Comparison of the profiles of the turbulent intensities 〈ρ̄v2
i 〉1/2 for i = 1, 2, 3 (a, b, c) and

the Reynolds stress −〈ρ̄v1v2〉 (d) at t = 70 obtained from the filtered DNS (o) and from LES using
M0–6 (see table 1 for symbols).

improvements over M0; the incorporation of these models is useful in LES of the
mixing layer. Within the group of these four models, the dynamic mixed model (M5)
provides the most accurate results, compared to the filtered DNS results. Table 2
further shows that with respect to overall accuracy M6 is next to M5, then M4 and
then M2.

The subgrid models studied in this paper are based on the notion of similarity
and the need to represent the energy transfer to the subgrid scales through the
introduction of dissipation. The latter is required since the filtering operation removes
the dissipative scales. Models which do not explicitly contain dissipation (M2, M3)
indeed do not capture the correct energy transfer and consequently display too
much molecular dissipation. Conversely, the Smagorinsky model has no mechanism
to determine the proper amount of subgrid-scale dissipation. However, such a
mechanism can be provided by the similarity hypothesis.

The assumption of similarity implies that the turbulent stresses display a univeral
behaviour in the inertial subrange. This assumption is not only used explicitly in
the similarity and gradient models, but also implicitly in the dynamic approach.
In particular, similarity justifies the use of one model at the different length scales
appearing in the Germano identity (15) (Carati & Vanden Eijnden 1996). This
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Figure M1 M2 M3 M4 M5 M6

Total kinetic energy 2 − + − 0 ++ +
Subgrid dissipation 3(a) − + − ++ + +
Molecular dissipation 3(b) − + + + + +
Backscatter 4 − 0 − − 0 0
Component τ12 5 − + 0 − + +
Energy spectrum A(k) 5 − − − + ++ 0
Vorticity in a plane 6, 7 − − − + ++ +
Maximum vorticity 8 − − − + + 0
Mmomentum thickness 9 − + − − + ++
〈v1v1〉1/2 10(a) − + − + + ++
〈v2v2〉1/2 10(b) − + + + + +
〈v3v3〉1/2 10(c) − + 0 + + +
−〈v1v2〉 10(d) − − − 0 ++ +

Table 2. Summary of the results for M1–6. The symbols −,0 and + refer to bad, reasonable and
good results, respectively. Furthermore, ++ is better than +.

approach has been shown to provide an accurate prediction of the subgrid dissipation
(cf. M4 in figure 3a). In combination with an explicit similarity model (M5, M6) the
dynamic approach results in a too large subgrid dissipation. This could be explained
as follows. For the calculation of the tensor Hij in (23) two consecutive applications
of the test filter are needed. Thus the similarity assumption is required to hold over a
much larger range of scales. For the larger scales this is generally less valid, leading
to a too small correlation between Hij and Mij appearing in (24). This is consistent
with the findings of Liu et al. (1994b) and leads to an over-prediction of Cd. For the
Reynolds number considered in this section this over-prediction is to a large extent
balanced by the under-prediction of the molecular dissipation when using a dynamic
model. This suggests that model M4 performs relatively better at higher Reynolds
numbers, where the molecular dissipation is even smaller. This is the subject of the
next section.

We did not include results for the non-dynamic mixed model (M2 plus M1, Bardina
et al. 1984), nor for the non-dynamic Clark model (M3 plus M1, Clark et al. 1979).
However, we did run simulations with these models. The results were similar to
those obtained with M1, in particular with respect to the excessive dissipation in the
transitional period.

Each subgrid model was used in combination with the top-hat filter. The filter is
explicitly used in filtering the DNS data and in LES with M2, M4, M5 and M6, but
is only formally used in M1 and M3. Piomelli, Moin & Ferziger (1988) compared
the spectral cut-off and the Gaussian filter in combination with several models and
they advise using M1 with the spectral cut-off and the mixed model (non-dynamic
version of M5) with the Gaussian filter. The Gaussian and top-hat filter are very
similar (see the Appendix and Vreman et al. 1994a) and we verified that results of the
M4 and M5 simulations do not change much if we use the Gaussian filter instead of
top-hat. In M1 the filter is not explicitly used; hence the conclusion that this model
is excessively dissipative during transition would not change for a spectral filter, even
if the results were compared with spectrally filtered DNS data.

The 323-grid is not too coarse for proper a posteriori tests. The results in this paper
show that LES on this grid is in satisfactory agreement with the filtered DNS, provided
an appropriate subgrid model is used. The results would of course be better if we
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increased the resolution to 643, but then even the coarse-grid DNS (M0) would give
reasonable results and the subgrid dissipation would not be larger than the molecular
dissipation. Using the 323-grid, however, the subgrid dissipation is about three times
higher than the molecular dissipation (figure 3), indicating that a subgrid model is
needed, since the largest part of the dissipation is caused by the small subgrid eddies.
On the other hand the 323 grid is sufficiently fine to discern the largest eddies, namely
the four spanwise rollers, subsequently pairing to two, and finally to one roller. The
resolution of 32 uniformly spaced points in the normal direction on a uniform grid
is not too small for the representation of the mean profile, which can be concluded
from the following arguments. Firstly, we have repeated the full comparison on a
LES grid of 32 × 64 × 32 points and this set of simulations confirmed the findings
in this section. Secondly, it has to be noticed that according to the definition of the
initial conditions in LES, filtered mean profiles are used, which are smoother than
the original mean profiles. The instability resulting from this profile is essentially the
same as in the filtered DNS, since for all models considered (except for M1) LES
on the 323-grid was observed to reproduce the four-roller structure that results from
the primary instability. Furthermore, the flow structure in the turbulent regime (e.g.
figures 1c, 8) suggests the choice of equal grid sizes in all three directions.

4. Self-similarity
In this section we perform LES of the temporal mixing layer at a higher Reynolds

number and in a larger domain using the subgrid models M0–6. Although the
simulation described in §3 contained a transition to small scales, the size of the
domain allowed two successive pairings only and the Reynolds number was relatively
low (50) in order to enable DNS. Compared to DNS, LES should be able to simulate
flows in a larger domain and at higher Reynolds number at the same computational
cost.

The temporal mixing layer in this section is simulated at Re = 500, based on the
reference values defined in §2.1. The calculation is performed on a grid with 1203 cells
and the computational domain is large, L = 120. This size is equal to eight times
the wavelength of the fundamental linear instability. Hence, the flow allows three
successive pairings before it saturates. Uniform noise is used to perturb the initial
mean flow (amplitude 0.05 and multiplied with e−x

2
2
/4), in contrast to §3.1 where an

eigenfunction perturbation was used. The LES employ the top-hat filter with the
basic filter width equal to twice the grid spacing.

At this Reynolds number there are no DNS results to compare with, but we can
verify whether the flow is self-similar. A temporal mixing layer is self-similar if the
development of the shear layer thickness is linear in time and profiles of normalized
statistical quantities at different times coincide. The common opinion is that turbulent
mixing layers display self-similar behaviour, provided the Reynolds number is high
and the computational domain is large and the simulation is performed sufficiently
far in time (Rogers & Moser 1994; Vreman et al. 1996c). Experimental work supports
the notion of similarity (Brown & Roshko 1974; Campagne, Pao & Wynanski 1976;
Bell & Mehta 1990). The specific self-similar state, however, is not unique but depends
on the initial forcing (Dimotakis & Brown 1976).

The evolution of the momentum thickness is shown in figure 12 for the subgrid-
models M1 and M4–6. None of the simulations is fully self-similar, since in each
case the momentum thickness curve is not perfectly straight in the turbulent regime.
The most self-similar case is obtained with the dynamic eddy-viscosity model M4,
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Figure 12. Evolution of the momentum thickness δ(t) obtained using M1 (solid), M4 (dashed),
M5 (dotted) and M6 (dashed-dotted).

where δ(t) is approximately linear between t = 100 and 250. The other two dynamic
models, M5 and M6, lead to a faster growth than M4 between t = 40 and 130, but
to a slower growth afterwards.

Like the results in §3, the present results show that M1 is too dissipative in the
laminar regime, where the laminar increase of momentum thickness is too large.
Although the model does not prevent the transition to turbulent flow, the transition
is delayed and the sudden growth of the momentum thickness starts relatively late
(at t = 175). Furthermore, the momentum thickness does not increase linearly in the
turbulent regime, showing that the mixing layer is not self-similar. The M1 results
shown were obtained using a Smagorinsky constant of 0.17 (Lilly 1967; Schumann
1991). In order to study the sensitivity to the Smagorinsky constant we repeated
the M1 simulation in this section with a lower coefficient, CS = 0.10. This value
was proposed by Deardorff (1970) in LES of turbulent channel flow, whereas Moin
& Kim (1982) used an even lower value. Compared to the dynamic models, M1
with CS = 0.10 was still much too dissipative in the first part of the simulation and
the transition to turbulence was still relatively late (t = 100). After transition had
occurred, the momentum thickness did not increase linearly, like in the simulation
with CS = 0.17.

Results for M0, M2 and M3 are not shown, because the simulations with these
models become unstable before t = 100 and, therefore, cannot be completed. The
reason is the insufficient dissipation from resolved to subgrid scales. We have noticed
too much energy in the small scales in the simulations at lower Reynolds number
(§3.2.4) and this leads to unstable simulations at high Reynolds number. We found
that these simulations were also unstable with a ‘kinetic energy-conserving’ scheme.
Even when the total kinetic energy cannot increase, there can be too much energy
in the small scales, leading to instability through the thermodynamic variables (as
indicated in §2.1).

The evolution of the dynamic model coefficients at x2 = 0 is shown in figure 13
together with the value of C2

S in M1. Indeed, CS = 0.17 is initially much too large and
is even too large in the turbulent regime. The alternative value tested, CS = 0.1 is also
too large initially, but too low in the turbulent regime. The Smagorinsky coefficient
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Figure 13. The dynamic model coefficient Cd at x2 = 0 in LES with M4 (dashed), M5 (dotted)
and M6 (dashed-dotted), and the value of C2

S in M1 (solid).

corresponding to the average value of the dynamic coefficient of M4 in the turbulent
regime would be CS = 0.13. The eddy viscosities in M5-6 model a part of the
turbulent stress tensor only and therefore the dynamic coefficients in M5–6 are lower
than in M4. However, in this case the differences between the model coefficients of
M4–6 are smaller than at low Reynolds number (Vreman et al. 1994b), which implies
that incorporation of a similarity or gradient part is less effective in the prediction of
the subgrid dissipation if the Reynolds number is high.

Statistical quantities are self-similar if profiles at different times coincide after the
appropriate normalization. In the following we consider the Reynolds stress profiles,
Rij = 〈ρ̄vivj〉, with vi defined as in §3.2.8, and the dissipation profile 〈ε〉 = 〈εsgs + εµ〉,
with εsgs and εµ defined as in §3.2.2. These profiles are functions of time and the
normal direction x2, which scales with δ(t). The Reynolds stress tensor and the
dissipation can be scaled by ρ1(∆U)2 and ρ1(∆U)3/δ(t) respectively, where ρ1 is the
upper free-stream density and ∆U is the velocity difference between the free streams.

The resolved turbulent kinetic energy 1
2
Rqq at x2 = 0 and the integrated dissipation∫

〈ε〉dx2 are shown in figure 14. In self-similar flow these quantities should not depend
on time. From this figure it appears that an approximate self-similar state is best
reached by M4. Due to the finite size of the computational domain the statistics are
expected to decay after some time, but compared to M4 the decay starts relatively
early for M5–6. The somewhat over-predicted subgrid dissipation by M5–6 noticed
in §3.2.2 is a possible reason for the relatively early decay. In these LES at high
Reynolds number, the fraction of the dissipation due to molecular viscosity is low
(less than 10% in the turbulent regime). Compared to εsgs the amount of backscatter
generated by M5–6 at high Reynolds number is less than 0.3%, which is even smaller
than at low Reynolds number (§3.2.3).

In principle self-similarity should be verified not for the resolved but for the
unfiltered flow field. The momentum thickness is based on the mean velocity field,
which is smooth and therefore hardly influenced by the use of filtered instead of
unfiltered variables. With respect to the dissipation the subgrid part (εsgs) is dominant
and was included in figure 14(b). In the following we also address the subgrid



Large-eddy simulation of the turbulent mixing layer 383
Tu

rb
ul

en
t e

ne
rg

y

0

0.15

0.20

0.25

50 100 150

Time
250 300

0.10

200

0.05

(a)

Tu
rb

ul
en

t d
is

si
pa

ti
on

0

0.05

0.06

0.07

50 100 150

Time
250 300

0.04

200

0.03

(b)

0.02

0.01

Figure 14. Evolution of the resolved turbulent energy 1
2
Rqq at x2 = 0 (a) and dissipation
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(b) obtained from LES with M1 (solid), M4 (dashed), M5 (dotted) and M6 (dashed-dotted).

contribution to the Reynolds stresses. The Reynolds stress tensor defined for unfiltered
variables, rij = 〈ρwiwj〉 with wi = ui − 〈ρui〉/〈ρ〉, can be related to the resolved
Reynolds stress Rij as follows:

rij ≈ Rij + 〈τij〉. (4.1)

This approximation used by e.g. Deardorff (1970) is exact in incompressible flow if
the LES filter is a ‘generic’ filter, which implies 〈f̄〉 = 〈f〉 (Germano 1996). (Using
the DNS data from §3, we found that 〈τij〉 estimates rij − Rij with an error of about
10%.)

Figure 15(a) displays the profile of the resolved Reynolds stress R11 obtained with
M4 at three distinct times, where y = x2/δ(t). The curves approximately coincide,
confirming that the simulation is reasonably self-similar during this period of time,
even for the resolved Reynolds stress. The subgrid contribution 〈τ11〉 cannot be
directly obtained from M4, because the trace τqq in M4 is not modelled and implicitly
added to the pressure. Estimates for the trace in terms of the eddy viscosity exist
(e.g. Deardorff 1970), but then it is still unclear which part of the trace corresponds
to τ11. We therefore estimate 〈τ11〉 using the similarity model for τ11. The results in
figure 15(b) show that the profiles of the subgrid contribution are not self-similar, but
that at later times a relatively smaller part of the Reynolds stress is in the subgrid
scales. Furthermore, the subgrid contributions are added to the resolved part of
the Reynolds stress and the results are also plotted in figure 15(b). With respect to
self-similarity figure 15(a) and 15(b) do not differ much.

Self-similarity in itself may not be sufficient evidence that a physically realistic flow is
simulated. For that reason we compare the centre value of the turbulent kinetic energy
1
2
Rqq (figure 14a) with the (untripped) experimental data from Bell & Mehta (1990,

figure 4a–c). The experimental value in the self-similar region, 0.035, corresponds to
0.035(∆U)2 = 0.14 in our scales. It was somewhat higher (0.043(∆U)2 = 0.17) just
before self-similarity was achieved. The simulation results with the three dynamic
models M4–6 are in reasonable agreement with these experimental observations. If
we assume that the subgrid contributions increase the curves in figure 14(a) about
10% (see figure 15b), the M4 simulation slightly over-predicts and M5–6 slightly
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Figure 15. Profiles of Reynolds stress R11 versus y = x2/δ(t) at t = 120 (solid), t = 160 (dashed)
and t = 200 (dotted). (a) Resolved Reynolds stress R11; (b) estimated subgrid part (symbol ◦) and
corrected R11 (no symbol).

20

40

60

0 20 40
x1

8060

–20

(a)

120

0

–40

–60
100

x2

0 20 40
x1

8060

(b)

120100

Figure 16. Positive (dotted) and negative (solid) contours of spanwise vorticity in the plane
x3 = 90 at t = 160 (a) and t = 240 (b). The contour increment equals 0.05.

under-predict the experimental result. Exact agreement with experimental statistics
is not required, because, as remarked above, the specific self-similar state is probably
not unique.

Finally, the spanwise vorticity in a planar cut of the domain at two distinct times
in the M4 simulation is shown in figure 16. The large-scale roller structures in
this simulation starting from uniform noise appear to be less prominent than in the
simulations starting from an eigenfunction perturbation (see also Rogers & Moser
1994).
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5. Conclusions

In this paper we have presented a posteriori tests of LES of the temporal mixing
layer using six subgrid models: Smagorinsky (M1), similarity (M2), gradient (M3),
dynamic eddy viscosity (M4), dynamic mixed (M5) and dynamic Clark (M6). The
first three subgrid models form the basis for the latter three dynamic models. Two sets
of simulations have been performed, at low and high Reynolds number respectively.
The LES in the first set have been compared with DNS data, whereas in the analysis
of the second set of simulations we focused on other aspects, such as self-similarity.
The conclusions drawn from the first set of simulations are presented first.

In the first set of simulations the quality of a model is determined by the discrepancy
of its results with the filtered DNS results. Furthermore, in order to determine whether
the inclusion of the subgrid model is useful, comparisons with a coarse-grid simulation
without any subgrid model (M0) have been performed. A summary of the results
is found in table 2. When the models are arranged with respect to the overall
accuracy of their results, the following sequence is obtained: M5, M6, M4, M2, M3,
M1. The results of the latter two models are in general worse than the M0 results;
incorporation of these subgrid-models in LES of the mixing layer is not useful. The
other models in general give better results than M0. The overall results indicate that
the dynamic mixed model displayed the best performance when compared to filtered
DNS results. The dynamic mixed model was also observed to yield the most accurate
results in comparative tests of subgrid models in LES of a driven cavity (Zang et al.
1993) and a rotating boundary layer (Wu & Squires 1995).

The Smagorinsky model was found to be excessively dissipative in the transitional
regime. Comparison with the filtered DNS demonstrated that M1 strongly influences
the linear evolution of disturbances, since the four-roller structure is not reproduced.
Furthermore, M1 hindered the transition to turbulence. No positive spanwise vorticity
was generated, the sudden growth of the momentum thickness did not occur and
turbulent intensities and Reynolds stress profiles were under-predicted.

Although from the a priori point of view M2 and M3 are very similar and both
provide highly accurate representations of the turbulent stress tensor (Vreman et
al. 1995) they behave very differently in actual simulations: M2 yields reasonable
results, whereas M3 leads to instabilities if no limiter is used. However, even with the
incorporation of a limiter, M3 produces too many small scales and leads to inaccurate
results for integral quantities and e.g. the streamwise turbulent intensity. In order to
stabilize the gradient model, the inclusion of a dynamic eddy viscosity as in M6 is
preferred over a limiter (M3), since the first case leads to more accurate results.

Examination of the energy spectra demonstrates that only the models which contain
a dynamic eddy viscosity (M4–6) provide the correct amount of small scales. Due
to insufficient dissipation of small scales by the subgrid model, the flow simulated
with M0, M2 and M3 contains too many small structures. This gives rise to a higher
molecular dissipation, which supplements the insufficient small-scale dissipation of
the model. Although the dissipation for small scales is insufficient, the total energy
dissipation provided by M2 was observed to be reasonable, since too much energy
was subtracted from the large scales. It is remarkable that the dynamic eddy-
viscosity model M4 provides satisfactory results, although it severely under-predicts
the magnitude of the individual turbulent stress components. An adequate dissipative
behaviour appears to be more important than a good prediction of the individual
turbulent stresses. A suitable mechanism for this dissipation is provided by the
similarity assumption used in the dynamic approach.
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The models M2 and M5–6 have mechanisms to mimic the backscatter of energy
from subgrid scales to resolved scales, but do not accurately predict it. However,
actual LES of the mixing layer seems to require only a small amount of backscatter.
The same is observed from the filtered DNS results, in which the backscatter is about
10% of the subgrid dissipation. Hence, a poor representation of the backscatter by
the subgrid models is not too much of a problem.

In this paper we have presented a posteriori tests. In a priori tests the six models
correlate with the real turbulent stress as follows: the correlation is high for M2 and
M3, somewhat lower for M5 and M6 and very low for the eddy-viscosity models M1
and M4 (e.g. Liu et al. 1994a; Vreman et al. 1995). Meneveau (1994) remarks that a
priori testing is often too pessimistic, i.e. a low correlation does not necessarily lead to
poor results, which is confirmed by our results obtained with M4. However, a priori
testing can also be much too optimistic, since a high correlation does not necessarily
lead to good results as our results for M2 and M3 show.

The second set of LES with M0–6 concern a mixing layer at a much higher
Reynolds number in a larger computational domain (§4). No DNS results are
available to compare with, since the Reynolds number is too high to accurately
resolve all scales with the present supercomputers.

Since the amount of subgrid dissipation obviously depends on the value of the
Smagorinsky constant CS , the dissipative behaviour of the Smagorinsky model could
be better using a lower value for CS . Therefore, in this case we also used the lower
CS = 0.10 in the simulation with M1. The model was still too dissipative in the
laminar regime; the transition occurred, but too late, and in the turbulent regime the
model was not sufficiently dissipative. Hence, a varying model coefficient that attains
the appropriate value in transitional and turbulent regimes is required. The dynamic
models meet this requirement.

The simulations with M0, M2 and M3 become unstable in the turbulent regime.
M0 has no subgrid dissipation and the dissipation of M2 and M3 is insufficient to
prevent an excessive amount of small scales.

The three dynamic models M4–6 adequately suppress the generation of small
scales, but there are differences between the results of the three simulations. Within
this group of models the dynamic eddy-viscosity model yields the most self-similar
turbulent statistics.

Despite the large improvements originating from the dynamic approach, the re-
sults presented in this paper still show considerable discrepancies in several flow
quantities, such as the profiles of the turbulent intensities and the momentum thick-
ness. Additional improvement of subgrid modelling may be guided by the present
results.

The results in this paper apply to the mixing layer at low Mach number. Details of
the comparison may be valid only for this case, but the global features are expected
to be more generally applicable. Examples of such global features are: the excessive
dissipation of the Smagorinsky model, the insufficient dissipation of small scales by
the similarity and gradient models, the relatively adequate subgrid-dissipation by
the dynamic models and the under-predicted magnitude of the individual turbulent
stress components by the dynamic eddy-viscosity model. In order to substantiate
this, we are at present studying more complex flows, which are physically realizable
and admit a quantitative comparison with experimental results. Examples of such
flows are the spatial mixing layer and (separated) boundary layer flow. Also, the
formulation of the LES approach to transonic compressible flows is subject of
study.
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Appendix
The dynamic procedure requires formulations of the subgrid model at the F-level

and the FG-level. The F-level is associated with the filter width ∆, the G-level with the
filter width 2∆ and the FG-level with the filter width κ∆. The value of κ equals 2 for
the spectral cut-off filter (Germano et al. 1991) and

√
5 for Gaussian filters (Germano

1992). For spectral cut-off and Gaussian filters, κ can be determined exactly, since the
consecutive application of two of these filters yields a filter function of the same type.
However, the consecutive application of two top-hat filters does not yield a top-hat
filter and the value of κ should not be 2 (as used for instance by Zang et al. 1993).
In this Appendix we argue that in conjunction with top-hat filters the optimum value
of κ equals

√
5.

We denote the original filter function by Ga with filter width a = ∆ and the test-
filter function by Gb with filter width b > a. The filter function corresponding to the
consecutive application of these two filters is denoted by H and satisfies the following
formula:

H(y) =

∫
Ω

Gb(y − z)Ga(z)dz. (A 1)

If Ga and Gb are spectral filters, H is a spectral filter as well with filter width b,
whereas if Ga and Gb are Gaussian filters, H is a Gaussian filter with filter width
(a2 + b2)1/2. However, the consecutive application of two top-hat filters is not a
top-hat filter; the filter function H has a trapezoidal shape. In LES employing the
dynamical procedure with top-hat filters, the filter width of H is usually assumed to
be the same as the filter width of Gb (Zang et al. 1993). However, this approximation
cannot be correct, because the H-filter will certainly render smoother signals than the
Gb-filter, so the filter width associated with H should be larger than b. We proceed
to show how an appropriate value for the filter width of H can be found. Since
the three-dimensional filter function is usually a product of three one-dimensional
filter functions, the analysis can be performed in one dimension. Suppose that H is
the trapezoidal filter function resulting from the consecutive application of two one-
dimensional top-hat filter functions Ga and Gb with b > a. This yields the following
expression:

H(y) =


(1/ab)(y + 1

2
(b+ a)) if − 1

2
(b+ a) < y < − 1

2
(b− a),

(1/b) if − 1
2
(b− a) 6 y 6 1

2
(b− a),

−(1/ab)(y − 1
2
(b+ a)) if 1

2
(b− a) < y < 1

2
(b+ a),

0 if |y| > 1
2
(b+ a) .

(A 2)

We next find an optimal approximation of H by a top-hat filter function Gc, given by

Gc(y) =

{
1/c if − 1

2
c < y < 1

2
c,

0 if |y| > 1
2
c .

(A 3)
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For this purpose we minimize the L2-norm of the error, which is a function of c:

δ(c) = ‖Gc −H‖. (A 4)

The choice of the L2-norm has the advantage that the error is also minimum in
spectral space, due to Parseval’s theorem. The minimum value of c will certainly
satisfy b − a 6 c 6 b + a. In this range the square of the error equals (after some
calculation)

(δ(c))2 =
1

b
− a

3b2
+
b+ a

ab
+

1

c

(
a

2b
+

b

2a

)
+

c

2ab
. (A 5)

Minimisation of the error requires

d

dc
(δ(c))2 = 0, (A 6)

which finally yields

c = (a2 + b2)1/2. (A 7)

It is remarkable that this relation, which represents an optimal approximation for
top-hat filters, is identical to the exact relation for Gaussian filters. Furthermore
it appears that when equation (A 7) is satisfied for top-hat filters, not only is δ(c)
minimum, but also the second moments of Gc and H are equal:∫ c/2

c/2

y2Gc(y)dy =

∫ (b+a)/2

−(b+a)/2

y2H(y)dy. (A 8)

Usually the ratio between the filter width of the test and the original filter is equal to
2 (b = 2a), in which case equation (A 7) gives c =

√
5a, which corresponds to κ =

√
5.
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