J. Fluid Mech. (1997), vol. 339, pp. 357-390. Printed in the United Kingdom 357
© 1997 Cambridge University Press

Large-eddy simulation of the turbulent
mixing layer

By BERT VREMAN, BERNARD GEURTS
AND HANS KUERTEN
Department of Applied Mathematics, University of Twente, PO Box 217, 7500 AE Enschede,

The Netherlands
e-mail: vreman@math.utwente.nl

(Received 23 November 1995 and in revised form 23 January 1997)

Six subgrid models for the turbulent stress tensor are tested by conducting large-eddy
simulations (LES) of the weakly compressible temporal mixing layer: the Smagorin-
sky, similarity, gradient, dynamic eddy-viscosity, dynamic mixed and dynamic Clark
models. The last three models are variations of the first three models using the
dynamic approach. Two sets of simulations are performed in order to assess the
quality of the six models. The LES results corresponding to the first set are compared
with filtered results obtained from a direct numerical simulation (DNS). It appears
that the dynamic models lead to more accurate results than the non-dynamic models
tested. An adequate mechanism to dissipate energy from resolved to subgrid scales
is essential. The dynamic models have this property, but the Smagorinsky model is
too dissipative during transition, whereas the similarity and gradient models are not
sufficiently dissipative for the smallest resolved scales. In this set of simulations, at
moderate Reynolds number, the dynamic mixed and Clark models are found to be
slightly more accurate than the dynamic eddy-viscosity model. The second set of LES
concerns the mixing layer at a considerably higher Reynolds number and in a larger
computational domain. An accurate DNS for this mixing layer can currently not be
performed, thus in this case the LES are tested by investigating whether they resem-
ble a self-similar turbulent flow. It is found that the dynamic models generate better
results than the non-dynamic models. The closest approximation to a self-similar
state was obtained using the dynamic eddy-viscosity model.

1. Introduction

Large-eddy simulation (LES) is an important technique to simulate turbulent flows.
In LES the large-scale motions in the flow are solved, whereas the effect of the small-
scale motions is modelled by a so-called subgrid model (Rogallo & Moin 1984).
LES requires less computational effort or can simulate flows at higher Reynolds
numbers than direct numerical simulation (DNS), which attempts to solve all scales
present in the turbulent flow. The turbulent stress tensor t;; is the most important
subgrid term in LES. Much effort has been put into the development of good subgrid
models for this tensor (Moin & Jimenez 1993) and, consequently, a large number of
subgrid models exist. The purpose of this paper is to perform a comparative study
of LES using various subgrid models. We do not focus on numerical methods, but
systematically investigate and compare the characteristic behaviour of a number of
subgrid models in actual LES of a free shear flow.
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The flow simulated is the three-dimensional temporal compressible mixing layer.
Direct numerical simulations of the turbulent mixing layer at various Mach num-
bers have been reported in literature. We mention the incompressible simulations
by Comte, Lesieur & Lamballais (1992) and Rogers & Moser (1993) and the highly
compressible simulations at convective Mach numbers 0.8 and 1.2 (Luo & Sand-
ham 1994 and Vreman, Sandham & Luo 1996c, respectively). The mixing layer in
this paper is simulated at a low convective Mach number of 0.2. At this Mach
number the physical characteristics of the flow are similar to those of the incom-
pressible flow (Sandham & Reynolds 1991). Furthermore, the subgrid modelling
in LES of this flow can be regarded as incompressible. This implies that the tur-
bulent stress tensor is the only subgrid term which needs to be modelled (Vreman
1995).

In this paper we test the following subgrid models for the turbulent stress tensor:
the Smagorinsky model (Smagorinsky 1963), the similarity model (Bardina, Ferziger
& Reynolds 1984; Liu, Meneveau & Katz 1994a), the gradient model (Clark, Ferziger
& Reynolds 1979; Liu et al. 1994a), the dynamic eddy-viscosity model (Germano
1992), the dynamic mixed model (Zang, Street & Koseff 1993; Vreman, Geurts &
Kuerten 1994b) and the dynamic Clark model (Vreman, Geurts & Kuerten 1996b).
Among these models are important representatives of the available subgrid models.
Three models employ the dynamic procedure (Germano 1992) in order to adjust the
value of the model coefficient to the local turbulence. We have restricted this study
to models which do not require the solution of an additional differential equation
(Ghosal et al. 1995).

Two sets of LES are conducted to test these subgrid-models. The tests are so-
called a posteriori tests, to be distinguished from a priori tests in which no LES are
performed (Meneveau 1994; Vreman, Geurts & Kuerten 1995). The LES results in
the first set are compared with filtered DNS results. The Reynolds number in this
case (specified in §3.1) is low, which is required to perform an accurate DNS with
the present computer capacity. The simulations in the second set are performed
at a higher Reynolds number and in a larger computational domain than in the
first set. These results are not compared with DNS data (DNS for this flow would
require too much computational effort), but are judged with respect to the degree of
self-similarity.

Although the flow considered in this paper is not physically realizable due to the
periodic boundary condition in the streamwise direction, it displays many charac-
teristic features of turbulence, like the energy cascade and inertial subrange, which
are main elements to be captured in subgrid modelling. A detailed quantitative
comparison between model predictions and experimental findings is not possible
due to the temporal framework of the simulation. However, a qualitative com-
parison of the dominant mechanisms can be made. Based on the present study
we arrive at the identification and explanation of shortcomings of subgrid models,
which provides a basis for future modelling of more complex, spatially evolving,
flows.

The paper is organized as follows. The mathematical formulation, specifying
governing equations, numerical approach and subgrid models, is found in §2. The
comparison of LES results with filtered DNS data is subject of §3. In §4 results
from the second set of simulations are presented. Section 5 summarizes the con-
clusions. In the Appendix the effective filter width of the filter resulting from two
consecutively applied top-hat filters is estimated, which is needed in the dynamic
procedure.
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2. Mathematical formulation

In the first subsection we will describe the configuration of the mixing layer, the
filtered Navier—Stokes equations and the numerical discretization. The subgrid models
will be formulated in the second subsection.

2.1. Governing equations

The temporal mixing layers simulated contain two streams with equal and opposite
free-stream speed U, which is used as reference velocity. Other reference values are
half the initial vorticity thickness (Lg) and the free-stream values for the density
(pr), temperature (Tr) and viscosity (ug). The free-stream Mach number M (also the
convective Mach number in this case) equals 0.2. The mixing layers are solved in a
cubic domain [0, L] x [—%L, %L] x [0, L], where the streamwise, normal and spanwise
directions are denoted by x;, x, and x; respectively. Periodic boundary conditions
are imposed in the stream- and spanwise directions, whereas the boundaries in the
normal direction are free-slip walls. The non-dimensionalized initial mean velocity
profile is given by u; = tanh(x;), whereas the initial temperature profile is obtained
from the Crocco—Busemann law (Ragab & Wu 1989) and the initial mean pressure
distribution is uniform. In order to initiate turbulence, either a random or an
eigenfunction perturbation is superimposed on the mean profile.

The mixing layer is simulated in a compressible framework, because the work
reported here is part of a research project on compressible flow. The interesting
compressibility effects in this flow are discussed elsewhere (Vreman et al. 1996c¢).

The partial differential equations which govern a compressible flow are the Navier—
Stokes equations, representing conservation of mass, momentum and energy. In DNS
these equations are directly solved, but in the LES approach these equations are
filtered in order to reduce the number of scales to be solved. The filter operation
extracts the large-scale part f from a flow variable f. In this paper we employ the
top-hat filter (Vreman, Geurts & Kuerten 1994a) with filter width 4, representing
the size of the smallest eddies resolved in LES. For compressible flows, Favre (1983)
introduced a related filter operation, f = pf/p, where p denotes the fluid density.

The filtered Navier—Stokes equations can be written in the following form (Vreman
1995):

0ip + 0;(pit;) = 0, (2.1)
0:(pi) + 0;(piiii;) + 0:;p — 0;6;; = —3;(ptij) + Ry, (2.2)
0ie + 0;((€e + p)iy) — 0(64;0:) + 0;4; = R, (2.3)

where t represents time and the symbols d; and 0; denote the partial differential
operators 0/0t and 0/0x; respectively. Furthermore, the summation convention for
repeated indices is used.

Concerning the flow variables, the Favre-filtered velocity vector is denoted by #,
while p is the filtered density and p the filtered pressure; e is the total energy density
of the filtered variables ¢ = p/(y — 1)+ % pii;ii;. The filtered temperature T is related to
the filtered density and pressure by the ideal gas law, pT = yM?p in non-dimensional
form. The ratio of the specific heats C, and Cp is denoted by y and is given the value
1.4.

The viscous stress tensor based on filtered variables is defined as 6;; = (,&/Re)S'ij.
The viscosity ji(= u(T)) is calculated from Sutherland’s law for air, Re is the Reynolds
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number based on the reference values introduced above, and
Sij = 5jﬁl + 81% - %51']'8/(17{1(, (24)

is the strain rate based on the Favre-filtered velocity, where ¢;; is the Kronecker delta.
The symbol ¢ in the energy equation represents the heat flux vector proportional to
the gradient of the filtered temperature, where the Prandtl number equals 1.

In this description the left-hand sides of (2.1)—(2.3) are the Navier—Stokes equations
expressed in the filtered variables p, %i; and p. The right-hand sides of the filtered
equations are the so-called subgrid terms. The most important subgrid-term occurs
in the momentum equation (2.2) and contains the turbulent stress tensor, defined as

Tij = ljl,\ﬁ; i; 11] (25)
The subgrid term R;, resulting from the nonlinearity in the viscous stress tensor, and
the subgrid terms in the energy equation (2.3), denoted by R,, can be neglected for
this flow and this Mach number (Vreman 1995).

The Navier-Stokes equations (in DNS) and filtered Navier—Stokes equations (in
LES) are discretized using central differences on a non-staggered uniform grid with
grid spacing h. The time integration is explicit and is performed with a compact-
storage second-order accurate four-stage Runge—Kutta method (Vreman 1995). The
convective terms (including pressure) are discretized with a robust fourth-order
method, which approximates e.g. d,f as (Vreman, Geurts & Kuerten 1996a)

(011)ijx = (=Sizajk + 8Siy1jk — 8Sic1jk + Si—2ji)/(12hy) (2.6)
with Sijk = (—8ij—2k +4gij—1x +10gijx + 4gij+1x — gij+2k)/ 16,
with gijk = (—fijk—2 +4fijk—1 + 10fijx +4fijk+1 — fijrs2)/16.

The viscous terms contain second-order derivatives and are calculated with second-
order accuracy. The viscous stress tensor, the turbulent stress tensor in LES and the
heat flux are calculated in centres of cells. In centre (i 4+ %, j+ %,k + %) the derivative
01f is approximated as

)1 by P L 178 1 )/ (2.7)
with S o1, 1= fijk+ fijrx +fi,j,k+1 + fijriis1)/4
1,]+2,k+2

The divergences of the viscous stress tensor and heat flux are subsequently calculated
with the same discretization rule applied to control volumes centred around vertices
(i, j, k).

It is important that the dissipation caused by the numerical scheme is small. For
this reason Blaisdell, Mansour & Reynolds (1993) recast the convective terms in the
compressible momentum equation in the skew-symmetric form (see Gresho 1991 for
an overview of the existing forms for incompressible flow). A central scheme applied
to the skew-symmetric form is ‘kinetic energy-conserving’, i.e. the total kinetic energy
is conserved apart from viscous and compressibility effects, but loses the conservation
of momentum. Although this scheme prevents a ‘blow up’ of kinetic energy, it does
not guarantee that other possible instabilities in a compressible solver will not occur
(e.g. locally negative temperature) (see §4). Our scheme discretizes the convective
terms in their standard divergence form and, consequently, mass, momentum and
total energy (kinetic plus internal energy) are conserved. We will verify that the
numerical dissipation of the scheme is small, albeit not zero (see §3.2.2). For the
same reason we do not use any explicit artificial dissipation. If the spatial resolution
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Model for 1;; Curve
MO 0 (no model) solid
M1 Smagorinsky *
M2  similarity X
M3 gradient +
M4  dynamic eddy viscosity ~ dashed
M5  dynamic mixed dotted
M6  dynamic Clark dashed-dotted

TaBLE 1. Subgrid models for the turbulent stress tensor.

is sufficient, the dissipation provided by the viscous and subgrid terms makes the
numerical method stable.

The filter width 4 in LES is set equal to 2h, indicating that a minimum of two
grid points is taken to represent the smallest eddies resolved in LES. Compared to
A = h, LES results obtained with 4 = 2h are less sensitive to discretization errors. In
several studies it was found that 4 = 2h leads to more accurate results than 4 = h
(Kwak, Reynolds & Ferziger 1975; Vreman et al. 1996a) and in some cases even
A/h > 2 seems necessary (Lund, Kaltenback & Akselvdl 1995). A larger 4/h ratio
leads to smaller discretization errors, but on the other hand the 4/h ratio is required
to be as small as possible in order to retain a maximum amount of information in
the resolved scales. An explicit use of the filter is only made in some of the subgrid
models and in filtering the DNS data.

2.2. Subgrid models

In total six models for the turbulent stress tensor t;; as it appears in the subgrid term
in the momentum equation will be investigated in this paper. For transparency we
present the incompressible formulations in which p = 1. In this case the Favre filter
reduces to the ‘bar’ filter and the turbulent stress tensor is written as

Tij = Tuj—ﬁiﬁj. (28)

The compressible formulations of the subgrid models are given in Vreman (1995).

The names of the models for 7;; with their abbreviations used here are listed in
table 1. We consider three non-dynamic subgrid models (M1-3) and three dynamic
subgrid models (M4-6). The first three models form the basis of the latter three. M4
is the dynamic version of the Smagorinsky model (M1), whereas in M5 the similarity
model (M2) and in M6 the gradient model (M3) are supplemented with a dynamic
eddy viscosity. The abbreviation MO corresponds to the case in which t;; is simply
omitted. In this case the LES is in fact a DNS on the coarse LES grid starting from
filtered initial conditions. The case MO is included in order to provide a point of
reference for the other subgrid models.

2.2.1. The Smagorinsky model

The first model is the well-known Smagorinsky model (M1) (Smagorinsky 1963;
Rogallo & Moin 1984), given by

W — —CIAS[S;  with [P = 15, (2.9)

Several values have been proposed for the Smagorinsky constant Cs: e.g. 0.2 in
isotropic turbulence (Deardorff 1971) and 0.1 in turbulent channel flow (Deardorff
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1970). With the use of power laws for the shape of the energy spectrum, Schumann
(1991) suggests Cs = 0.17. In this paper we use the latter value 0.17 and discuss the
effect of adopting a lower value in §4. The Smagorinsky model is often too dissipative
in laminar regions with mean shear (Germano et al. 1991) and the correlation with
the actual turbulent stress tensor is usually quite low (about 0.3 in several flows). The
similarity and gradient model, described below, are less dissipative in laminar regimes
and correlate much better with the actual turbulent stress (0.6 to 0.9 in several flows
(Liu et al. 1994a; Vreman et al. 1999)).

2.2.2. The similarity model

The similarity model (M2), formulated by Bardina et al. (1984) and revisited by
Liu et al. (1994a), is not of the eddy-viscosity type. It is based on the assumption that
the velocities at different levels give rise to turbulent stresses with similar structures.
More specifically, the definition of 7;; in terms of the unfiltered variables u; is applied
to the filtered variables #;:

) =T, — ;. (2.10)

In contrast to eddy-viscosity models, this model has a mechanism to represent
backscatter of energy from subgrid to resolved scales.

2.2.3. The gradient model
The gradient model (M3) expresses t;; as an inner product of velocity gradients
(Clark et al. 1979; Liu et al. 1994a):

fg) = 5 A%(00;)(01). (2.11)

This model is equal to the lowest-order term in A after substituting the following
Taylor expansions into the similarity model (2.10):

Uill; = Uill; + 55 A0 (Uit;) + 0(4%), (2.12)
U = + % A 0udl; + 0(4%). (2.13)

To obtain the gradient model we expanded the similarity model and not the real
turbulent stress 7;; itself. An expansion of 7;; itself involves Taylor series expansions of
the rapidly fluctuating unfiltered velocity field (Rogallo & Moin 1984). An expansion
of the similarity model is more appropriate since it involves Taylor series expansions
of filtered quantities only, which are varying much more smoothly over a length of
order A than unfiltered quantities. A reason to consider the gradient model is its
higher efficiency in actual simulations when compared to the similarity model. No
extra filterings are needed and the derivatives of the velocity can be reused in the
calculation of the viscous stresses.

Simulations with the pure gradient model (2.11) appear to be unstable (Vreman,
Geurts & Kuerten 1996b). Clark et al. (1979) added the Smagorinsky model, but
the resulting model inherits the excessive dissipation of the Smagorinsky model.
We follow another approach, suggested by Liu et al. (1994a) and supply the gradient
model with a ‘limiter’ to prevent energy backscatter. In this procedure the subgrid
model is prescribed by crf.;), i.e. the gradient model multiplied with a function c.
The function ¢ equals one if rg’)& iu; < 0 and zero otherwise. This substitution ensures
that the subgrid model dissipates energy from resolved to subgrid scales.
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2.2.4. The dynamic eddy-viscosity model

The excessive dissipation of the Smagorinsky model in laminar regimes is overcome
if the model constant is replaced by a coeflicient which is dynamically obtained and
depends on the local structure of the flow. Such a dynamic eddy-viscosity model
(M4), which has been proposed by Germano (1992), has successfully been applied to
a number of flows (Moin & Jimenez 1993). This model adopts Smagorinsky’s eddy-
viscosity formulation, but the square of the Smagorinsky constant Cs is replaced by
a coefficient Cy:

1) = —C,A[S[S;. (2.14)
The coefficient C,; is dynamically adjusted to the local structure of the flow using the
following procedure. First, apart from the basic filter level (F-level), denoted by the
bar filter, Germano introduced a test filter (at the G-level), which is denoted by a hat
(7) and corresponds to a filter width 24. The consecutive application of these two
filters, resulting in e.g. u;, defines a filter on the ‘F G-level’ with which a filter width x4
can be associated. For top-hat filters, adopted in this work, the optimum value for x
equals /5 (see the Appendix). Next we consider Germano’s identity, which reads

Ti'_%ij =Lij- (215)

The right-hand side of (2.15) can explicitly be calculated from the variables on the
F-level:

The terms on the left-hand side of the Germano identity are the turbulent stress on
the FG-level,

Tij = %Uj_ﬁjﬁj, (217)
and the turbulent stress on the F-level filtered with the test filter, respectively. The
terms on the left-hand side cannot be calculated from the variables on the F-level.

The subgrid model (equation (2.14)) is substituted into the Germano identity, which
means that expressions for Tj; and 7;; are obtained by formulating the subgrid model
in FG-filtered quantities and F-filtered quantities, respectively. This yields

CdMij = Lija (218)
with
M;; = —(k4)*|S|S;; + 4°(S|S ;. (2.19)
Since equation (2.18) represents a system of equations for the single unknown C,, a
least-squares approach (Lilly 1992) is followed to calculate the model coefficient,
(M;;Lij)
Ci=——+. (2.20)
(M;;M;;)
In order to prevent numerical instability caused by negative values of C,, the nu-
merator and denominator in equation (2.20) are averaged over the homogeneous
directions, which is expressed by the symbol (.). Furthermore, the model coefficient
C, is artificially set to zero at locations where the right-hand side of (2.20) has negative
values. One assumption of the formulation above is that variations of C,; on the scale
of the test filter are small. An alternative formulation which does not require this

assumption has been proposed by Piomelli & Liu (1994). Some LES in this paper
have been repeated using this formulation, but no significant differences were found.
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2.2.5. The dynamic mixed model

The relatively accurate representation of the turbulent stress by the similarity
model and a proper dissipation provided by the dynamic eddy-viscosity concept are
combined in the dynamic mixed model (Zang et al. 1993; Vreman et al. 1994b).
The dynamic mixed model (M5) employs the sum of the similarity and Smagorinsky
eddy-viscosity model as base model:

pr) = priy) — CaA*[S[Sy;. (2.21)
The dynamic model coefficient C; is obtained by substitution of this model into the
Germano identity, which yields

where the tensors L;; and M;; are defined by equations (2.16) and (2.19) and the
tensor Hj; is defined as

f— == — o~

Hyj = Wiy — uitt; — (W — Wii)). (2.23)

By analogy with the formulation of the dynamic eddy-viscosity model, the dynamic
model coefficient is obtained with the least-squares approach:

(M;;(Lij — H;j))
(MM~

which completes the formulation of the dynamic mixed model.

Cy = (2.24)

2.2.6. The dynamic Clark model

Finally, we consider the dynamic Clark model (M6) (Vreman et al. 1996b), which
employs the Clark model as base model:
o) =1 — C, 4SSy (2.25)
The formulation is similar to the formulation of MS5, the only difference being
the ‘gradient’ part M3, which replaces the similarity part M2 of the model M5.
Substitution of the dynamic Clark model into the Germano identity yields equation
(2.22) for Cy. In this case the tensor H;; expresses the difference of the gradient model
on the FG-level and the F-level:

Hij = %(Kﬁk)zakaiak/ﬁj - %Aiakﬁ/ia\kaf (226)

The dynamic model coefficient C, is obtained from the right-hand side of expression
(2.24). Unlike the gradient model M3, the model M6 does not require a limiter for
stability purposes. Model M6 requires less computational effort than the dynamic
mixed model, in the same way that M3 is cheaper than M2.

3. Agreement with filtered DNS data

In this section the performance of the six subgrid models is tested in actual LES
and the results are compared with filtered DNS results.

3.1. Description of DNS and LES

We simulate the three-dimensional temporal mixing layer described in §2.1. The
length L of the domain is set equal to four times the wavelength of the most unstable
mode according to linear stability theory, thus allowing two subsequent pairings of
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spanwise rollers. The initial condition is formed by the mean profiles superimposed
with two- and three-dimensional perturbation modes obtained from linear stability
theory (Sandham & Reynolds 1991). A single mode is denoted with («, f), where
o is the streamwise and f the spanwise wavenumber. The two-dimensional modes
are (4,0), (2,0) and (1,0), where (4,0) is the most unstable mode with wavelength
equal to L/4. The subharmonic modes (2,0) and (1,0) initiate vortex pairings. Three-
dimensionality is introduced by adding the oblique mode disturbances (4,4), (4, —4),
(2,2), (2,=2), (1,1) and (1,—1). Furthermore, random phase shifts in the oblique
modes remove the symmetry in the initial conditions. Following Moser & Rogers
(1993) the amplitude of the disturbances is large (0.05 for the two-dimensional and
0.15 for the three-dimensional modes).

The Reynolds number Re based on upper-stream velocity and half the initial
vorticity thickness equals 50. It is sufficiently high to allow a mixing transition to
small scales as observed in the incompressible simulations by Comte et al. (1992) and
Moser & Rogers (1993). On the other hand it is sufficiently low to enable an accurate
DNS that resolves all relevant turbulent scales on the computational mesh.

The DNS is conducted on a uniform grid with 192* cells. The accuracy of this
simulation is found satisfactory. In particular the linear growth rates of the dominant
instability modes are captured within 1%. Furthermore, very similar results are
obtained from a simulation using a coarser grid with 1283 cells (as shown in Vreman
1995). The time step of the explicit four-stage method equals 0.022, which is required
for stability purposes. It is much smaller than needed for an accurate temporal
evolution of the smallest scales.

Visualization of the DNS demonstrates the roll-up of the fundamental instability
and successive pairings (figure 1). Four rollers with mainly negative spanwise vorticity
are observed at t = 20. After the first pairing (¢t = 40) the flow has become highly
three-dimensional. Another pairing (¢ = 80), yields a single roller in which the flow
exhibits a complex structure, with many regions of positive spanwise vorticity. This
structure is an effect of the transition to turbulence which has been triggered by the
pairing process at t = 40 (Moser & Rogers 1993). Hence, the flow clearly contains
a cascade towards small scales and all relevant scales are accurately represented on
the fine grid. The simulation is stopped at ¢t = 100, since the single roller at t = 80
cannot undergo another pairing.

In order to perform LES we solve the filtered Navier—Stokes equations closed
with a subgrid model for the turbulent stress tensor. The boundary conditions for
the filtered variables are the same as for their unfiltered counterparts. The initial
conditions are obtained by filtering the initial conditions of the DNS described above.
The simulations are performed with a filter width 4 = L/16 on a uniform grid with
323 cells, which is considerably coarser than the DNS grid. The time step following
from a stability analysis equals 0.14. The integration which appears in the definition
of the filter operation is performed with the trapezoidal rule.

A consistent comparison between LES and DNS data requires filtering of the
solution obtained with DNS. In order to obtain filtered DNS results, the filter
operation is applied to the variables on the fine grid. Next, the filtered data are
easily obtained on the coarse LES grid (being a subset of the fine DNS grid)
through restriction of the filtered fine-grid data. Accurate LES results should be
close to the filtered DNS results. Even if a ‘perfect” LES model is adopted, exact
agreement between LES and filtered DNS results cannot be expected for all types
of quantities. A number of different unfiltered initial conditions defined on a fine
grid can correspond to the same filtered initial condition defined on a coarse grid.
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(a) (b)

20t

FiGUre 1. Contours of spanwise vorticity from DNS for the plane x; = 0.75L at (a) t = 20, (b)
t =40 and (c¢) t = 80. Solid and dotted contours indicate negative and positive vorticity respectively.
The contour increment is 0.1.

In general the DNS starting from these unfiltered initial conditions will not lead to
exactly the same filtered DNS results. The agreement between LES and filtered DNS
results for averaged quantities is likely to be higher than for instantaneous quantities.
Hence, good quantitative agreement between accurate LES and filtered DNS results is
demanded for averaged quantities and global features, rather than for instantaneous
quantities, such as the evolution of the velocity at a specific location.

LES are performed using the six subgrid models for 7;; formulated in § 2.2.
The performance of a specific subgrid model is considered to be bad if the errors
(deviations from the filtered DNS) are comparable to or larger than the errors
corresponding to MO (no subgrid model). In such a case the incorporation of the
subgrid model does not make sense. For most quantities the discrepancy between the
coarse-grid simulation without a subgrid model and the filtered DNS is quite large,
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illustrating that there is something to improve upon; the contribution of a subgrid
model should be significant.

3.2. Comparison of results

Various quantities obtained from LES with M0-6 are shown and compared with the
filtered DNS data. We consider several aspects of the kinetic energy in detail: the
evolution of total kinetic energy, turbulent and molecular dissipation, backscatter
and Fourier energy spectra. The turbulent stress tensor accounts for the transfer of
kinetic energy from resolved to subgrid scales. Some of the selected models adopt
the eddy-viscosity hypothesis in order to approximate the energy transfer to subgrid
scales. In contrast to these models, non-eddy-viscosity models (e.g. similarity) can
have mechanisms to produce backscatter of energy from subgrid to resolved scales.
For these models the amount of backscatter will be calculated. Furthermore, as a
local quantity the spanwise vorticity in a representative plane serves to monitor the
local qualitative performance of the six models. We also investigate the evolution of
the momentum thickness and various averaged statistics, e.g. Reynolds-stress profiles.
In this way a number of essentially different quantities (mean, local, plane averaged)
are included in the a posteriori tests in order to assess the quality of the models.

3.2.1. Total kinetic energy

A comparison of the subgrid models with respect to the evolution of the total
kinetic energy, based on filtered variables,

Ez/;f)ﬁiﬁidx, (31)
Q

is given in figure 2. First we discuss the Smagorinsky model M1, which gives even
worse predictions than MO. The total kinetic energy E for M1 is observed to exhibit
a characteristic behaviour: in the transitional regime of the simulation the dissipation
of energy is far too large, while it is far too low afterwards. M1 gives such an excessive
dissipation in the transitional regime that the transition to turbulence is hindered.
The excessive dissipation caused by this model has also been observed by Piomelli
et al. (1990a) in their study of turbulent channel flow. The other models (M2-6) are
not too dissipative in the transitional regime. The M3 case gives no improvement
over MO, but M2 and M4—6 do improve the results. In contrast to M3, no limiter
is required to stabilize M2. Comparison of the curves of M2 and MO in figure 2
shows that the similarity model M2 dissipates approximately the correct amount of
energy. As will be shown below, the simulation with M2 does not provide sufficient
dissipation for small scales, although the total dissipation is reasonably well predicted.
The results for M4, the dynamic eddy-viscosity model by Germano et al., illustrate
that the dynamic adjustment of the model coefficient meets the major shortcoming
of Smagorinsky’s model, namely the excessive dissipation in the transitional regime.
Indeed the results are much better than those of M1. The dynamic mixed model
MS5 and the dynamic Clark model M6 both accurately predict the evolution of E.
Within the group of models considered, M5 most closely approaches the filtered DNS
results.
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FIGURE 2. Comparison of the total kinetic energy E obtained from the filtered DNS (o) and from
LES using M0-6 (see table 1 for symbols).

3.2.2. Turbulent and molecular dissipation

The decay of the total kinetic energy, E, is described by the following partial
differential equation:

0,E = /(Pd — €, — €55)dx, (3.2)
Q
where
Py = po,diy, (3.3)
e, = [iS;;0,l;, (3.4)
€Esgs — —ﬁrijajﬁi. (35)

In our case the contribution of the pressure dilatation P, can be neglected, since the
flow is almost incompressible. The molecular dissipation, €,, is always positive due
to the equality S,-ja il = %S‘j The subgrid dissipation, ey, represents the amount
of energy transferred from resolved to subgrid scales, which is positive if an eddy-
viscosity model is adopted for 7;;. For non-eddy-viscosity models, however, this term
can be positive or negative, referring to forward or backscatter of subgrid-scale kinetic
energy respectively. Backscatter produced by subgrid-models is sometimes hard to
control within a simulation and can lead to numerical instability. From the models
we consider, the gradient model (M3), as formulated in equation (2.11), leads to
instabilities if the backscatter is not prevented with the use of a limiter (§2.2.3).
Thus, the decay of total kinetic energy is caused by both subgrid-scale and molecular
dissipation. The subgrid-scale dissipation and molecular dissipation integrated over
the domain are shown in figure 3. Simulation MO is not found in figure 3(a): it has
no subgrid-scale dissipation, since no subgrid-model is adopted. Figure 3(a) clearly
reveals the excessive dissipation of M1 in the transitional regime. For the other
models the subgrid-scale dissipation is initially small, whereas it grows when the flow
undergoes the transition to turbulence. Furthermore, M2 (without limiter) and M3
(with limiter) are observed to dissipate energy, although these models do not employ
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FIGURE 3. Comparison of the subgrid-scale dissipation fQ €5sdx (a) and molecular dissipation

fQ e,dx (b) obtained from the filtered DNS (marker o) and from LES using M1-6 (see table 1 for
symbols).

an eddy—viscosity. Compared to the filtered DNS results, the subgrid dissipation is
reasonably well predicted by M2 and M4-6.

The simulations that employ an eddy viscosity (M1, M4-6) produce an almost
constant level of molecular dissipation, whereas the molecular dissipation increases
and becomes too large for MO, M2 and M3. The presence of too many small
scales leads to the over-predicted molecular dissipation. In this way the molecular
dissipation takes over part of the work that should be performed by the subgrid
model. Obviously, the simulation with MO is expected to contain too many small
scales, since there is no subgrid model to transfer energy to subgrid scales. As will be
shown in §3.2.4, the simulations with the models M2 and M3 also contain too many
small scales. The amount of small-scale energy dissipated by the subgrid model is
insufficient in case M2 and M3.

With respect to the dynamic models M4—6 the subgrid dissipation in the turbulent
regime is best approximated by M4. The molecular dissipation is somewhat too
small for all three models. The subgrid dissipation for M5-6 is somewhat too
large. Consequently, the total energy decay for M5-6 is approximately correct and
better than for M4. This cancellation of errors in subgrid and molecular dissipation
will not occur in flows at very high Reynolds number, since in such flows the
molecular dissipation is negligible compared to the subgrid dissipation. From the
curves in figure 3 for the filtered DNS results and M4-6, it is inferred that in the
turbulent regime of this flow the ratio between subgrid-scale dissipation and molecular
dissipation is about 2 to 3, which is comparable to ratios reported in Piomelli et al.
(1990b). Although this mixing layer contains a mixing transition to small-scale
turbulence, the Reynolds number is relatively low. The molecular dissipation of
resolved scales (e,) will decrease if the Reynolds number is increased. A larger part
of the dissipation will occur at subgrid scales since dissipation is essentially a small-
scale phenomenon. Thus in high-Reynolds-number LES the somewhat over-predicted
subgrid dissipation of M5-6 will not be compensated by the under-predicted molecular
dissipation. Hence, in high-Reynolds-number LES the total dissipation process in the
turbulent regime is possibly best predicted by M4 (see §4).
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FIGURE 4. Comparison of the amount of backscatter obtained from the filtered DNS (o) and from
LES using M2, M5 and M6 (see table 1 for symbols).

Figures 2, 3 and 4 can be used to verify that the dissipation caused by the numerical
scheme is small. The convective terms in the continuity and the momentum equations
give rise to the following term on the right-hand side of the equation for the total
kinetic energy (3.2):

— [ @iy = S, o o (36)

Analytically this term can be rewritten in divergence form, 0 ,(%paia,-a ), which yields
zero after integration over the flow domain. Numerically, however, this term is not
zero and measures the amount of numerical dissipation (it would be zero for a
so-called ‘kinetic energy conserving’ scheme). We illustrate this for the simulation
with M5 and integrate equation (3.2) over time. The total decay of kinetic energy
(E(t = 0) — E(t = 100)) equals 22068 (figure 2). Integration of the right-hand side
of (3.2) yields 21 170 for subgrid and molecular dissipation (figure 3) and 128 for the
dissipation caused by the pressure dilatation term. Hence the numerical dissipation
is 770, which is only 3.5% of the total dissipation. (We have checked that the
effects due to the discretization in time and rewriting Py, e, and €, are negligible.)
For the other dynamic models the numerical dissipation has almost the same value.
The numerical dissipation is largest in the no-model case (1564), due to the large
amount of under-resolved small scales, but it is still small compared to the molecular
dissipation (13 360). It appears that if the subgrid dissipation is adequately handled
by the subgrid model, the numerical dissipation with the present numerical scheme is
sufficiently small.

3.2.3. Backscatter

The amount of backscatter produced by several subgrid models is addressed next.
The eddy-viscosity models M1 and M4 do not produce backscatter since the model
coefficient in M1 is a positive constant by definition and the dynamic model coef-
ficient in M4 is restricted to positive values in order to ensure numerical stability.
Moreover, the limiter concept in M3 artificially removes the backscatter from this
model. Therefore, the only models which produce backscatter are M2, M5 and M6.
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For these models the total amount of backscatter, defined as

/ min(eg,, 0)dx, (3.7)
Q

is plotted in figure 4. Since M5-6 incorporate an eddy-viscosity, these models produce
less backscatter than M2. The amount of backscatter for M5-6 is relatively low in the
turbulent regime, where the eddy-viscosity part of the model is more important than
in the transitional regime. A comparison with the filtered DNS results shows that M2
produces too much backscatter, whereas M5-6 do not produce enough backscatter.
Except in the early stages of the simulation, the amount of backscatter is only a
small fraction of the forward scatter (about 10% for the filtered DNS results). A4
priori tests of transitional and turbulent channel flow show comparable back- and
forward scatter for the spectral cut-off filter, but smaller back- than forward scatter
for the top-hat and Gaussian filters (Piomelli et al. 1990b). Here a posteriori tests of
the mixing layer demonstrate that in the filtered DNS on a coarse grid and in actual
LES with the top-hat filter the structure of the turbulent flow is such that the amount
of backscatter is relatively small. In a recent study on dynamic LES of isotropic
turbulence, taking backscatter into account did not significantly influence the results
either (Carati, Ghosal & Moin 1995).

Others decompose the subgrid dissipation ey, into a mean and a fluctuating part
(Jiménez-Hirtel 1994; Horiuti 1995) and find that the amount of backscatter in the
fluctuating part is relatively large. In this subsection we focused on the importance
of backscatter relative to the full dissipation of energy to subgrid scales.

3.2.4. Magnitude of turbulent stress

In this subsection we turn to the prediction of the separate components of the
turbulent stress. We restrict the presentation to the 7;, component, but similar
conclusions hold for the other components as well.

The L,-norm of the 71, component of the turbulent stress tensor is plotted in figure
5. Model M1 strongly over-predicts the magnitude in the transitional regime. The
prediction of the similarity model M2 is better than of the gradient model M3 and is
of all models closest to the filtered DNS results. The turbulent stress in the dynamic
eddy-viscosity model is much too small: it is less than half the filtered DNS value.
The dynamic mixed models M5 and M6 also under-predict the real magnitude of 7y,
but compared to M4 the curves are much closer to the filtered DNS result.

To further analyse the behaviour of the dynamic mixed and Clark models the
L,-norms of the separate components of M5 and M6 as models for 7y, are plotted in
figure 6(a). The similarity and gradient components clearly dominate in the L,-norm
of 1715; the Ly-norms of these parts are only slightly smaller than the norms of the
sums (with the eddy-viscosity parts added). With respect to the contribution to the
subgrid dissipation (figure 6b) the picture is completely different: the eddy-viscosity
parts contribute more to the dissipation than the similarity and gradient parts. These
a posteriori findings are in agreement with the a priori findings reported by Liu et al.
(1994a). The explanation of this behaviour is obvious: the eddy-viscosity parts is
aligned with the strain rate (by definition), the similarity and gradient parts are not and
neither is the real turbulent stress tensor. A more remarkable observation is that the
dynamic eddy-viscosity model gives the proper subgrid dissipation, but under-predicts
the turbulent stresses. This situation is more desirable than a situation in which the
magnitude of the turbulent stresses is correctly modelled, but the subgrid dissipation
is much too large. This case would occur if the dynamic formulation forced a correct
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FIGURE 5. Comparison of the L,-norm of 7, obtained from the filtered DNS (o) and from LES
using M1-6 (see table 1 for symbols).
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prediction of the magnitude of the individual components of the turbulent stress
tensor. If good estimates of the individual components are required, the dynamic
mixed and Clark models are preferred over the dynamic eddy-viscosity model, because
they give reasonable magnitudes of the turbulent stresses in combination with a proper
dissipative behaviour.

3.2.5. Energy spectrum

We mentioned that the increase in molecular dissipation observed for MO, M2 and
M3 was due to the presence of small scales. This is further clarified by examination
of the energy spectrum at a certain time and the time evolution of specific small-
and large-scale components of the spectrum. Figure 7 contains the streamwise kinetic
energy spectrum in the turbulent regime at t = 80, denoted by A(k), where k is the
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FIGURE 7. Comparison of the streamwise energy spectrum A(k) at t = 80 obtained from the filtered
DNS (o) and from LES using M0-6 (see table 1 for symbols).

streamwise wavenumber. The spanwise energy spectrum exhibits similar features.
The filtered DNS result does not contain an inertial range displaying the —5/3-law,
because the spectrum is based on the filtered velocity and the Reynolds number is
relatively low in order to enable DNS. The spectrum of the filtered DNS is in good
agreement with those of the dynamic models M4 and MS5, with a slight preference
for M5. The spectrum for the third dynamic model (M6) is too large for the highest
wavenumbers. Furthermore, we observe that the simulation with M1 is not able to
generate the desired amount of small scales. On the other hand, the contributions
of high wavenumbers are too high for MO, M2 and M3 and, consequently, these
simulations contain too many small-scale contributions. This was to be expected for
MO, having no subgrid was model, whereas this result indicates insufficient energy
dissipation of small scales for M2 and M3.

3.2.6. Spanwise vorticity in a plane

The spanwise vorticity component is often used to visualize the large-scale roller
structure in mixing layers at low Mach number. In figure 1 we have visualized the
scenario for the DNS: four rollers of spanwise vorticity at t = 20, two at t = 40 and
one at t = 80. During these pairing processes the mixing layer undergoes a transition
to turbulence and many small regions of spanwise vorticity of both signs occur. In the
LES this scenario is reproduced in nearly all cases (M0, M2-6). Only the simulation
with the Smagorinsky model M1 is an exception: instead of four rollers at t = 20
only two rollers form, indicating that the linear instability process is highly affected
by the excessive dissipation caused by M1. Figure 8 displays the spanwise vorticity
at t = 80 in the plane x3 = 0.75L; for the filtered DNS restricted to the coarse grid
and for M0-6. First, we compare the filtered DNS result in figure 8(a) with the
unfiltered DNS result in figure 1(c), which corresponds to the same time and plane.
Obviously, the smallest structures are removed by the filtering and the peak values of
the vorticity are considerably reduced. The vorticity field of the filtered variables can
successfully be represented on the coarse grid. Furthermore, the amount of positive
spanwise vorticity in the filtered case is smaller than in the unfiltered result. We
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conclude that most structures of positive spanwise vorticity in the DNS are smaller
than the filter width 4, thus being subgrid scales on the LES grid.

In the following, we turn to the LES predictions of M0-6 in figure 8(b—h), which
ideally should resemble the filtered DNS result in figure 8(a). The simulation with
no subgrid model (figure 8b), contains too many small-scale structures and the peak
intensities are too large. The physical dynamics of such small-scale structures clearly
cannot be correctly captured on the coarse 323-grid. On the other hand the result in
figure 8(c), corresponding to the Smagorinsky model M1, is too smooth; it contains
mainly large-scale structures. The two rollers produced at t = 20 (instead of four)
have slowly started to pair at t = 80, but no transition to smaller scales occurs and
the mixing layer is much too thin. Like MO, the similarity model (M2, figure 84) and
gradient model (M3, figure 8e) give rise to an excessive number of small structures
and regions of positive spanwise vorticity. This is in agreement with the energy
spectra in figure 7, in which the contributions at high wavenumbers are too large.
Furthermore, the vorticity distribution of M2 is quite similar to MO, only the peak
intensities for M2 are weaker. Figure 8(e) clearly shows that M3 under-predicts the
thickness of the layer.

The vorticity obtained with the dynamic models (M4—6 in figure 8f—h) is qualita-
tively in better agreement with the filtered DNS results than the previous plots. The
peak values of the vorticity are quite well predicted and almost the correct amount of
small structure is present. With respect to the dynamic models, M5 is preferred over
M4 and M6. The thickness of the mixing layer is better predicted by M5 than by M4.
Furthermore, compared to M4 and M6, more regions of positive spanwise vorticity
are present and the negative regions are less connected, which is in agreement with
figure 8(a). Hence, M5 yields the best qualitative agreement with the filtered DNS.
As explained in §3.1 detailed agreement between LES and filtered DNS on a local
instantaneous level is not required.

The structure obtained with M5 (figure 8g) is more elongated in the x;-direction
than the filtered DNS structure in figure 8a. The spanwise vorticity of the M5 LES
in other planes at t = 80 (e.g. x3 = L), however, shows much rounder structures.
Furthermore, a more ‘rolled-up’ structure in the same plane (x3 = 0.75L) is found
at a later time (t = 85). Compared to the filtered DNS, the pairing process and the
growth of the shear layer are somewhat delayed in LES with M5 (see also figure 10).

3.2.77. Positive spanwise vorticity

The occurrence of positive spanwise vorticity in the mixing layer is related to the
transition to turbulence. Due to the mean profile, the spanwise vorticity is initially
negative in the whole domain. In the two-dimensional case such an initial condi-
tion implies that the (spanwise) vorticity remains negative throughout the simulation.
Apart from compressibility effects, only the ‘vortex-stretching’ term in the vorticity
equation can increase the global maximum of a vorticity component. Vortex stretch-
ing is essential in the generation of turbulence. From examining the evolution of
the maxima (or minima) of vorticity components it can be inferred whether this
mechanism is present in the flow.

In figure 9 the evolution of the maximum of the spanwise vorticity is shown for
the various simulations considered. The filtering strongly reduces the DNS values for
this quantity, as is observed from a comparison of figures 1(c) and 8(a), but figure
9 shows that the sudden increase of positive spanwise vorticity is also present in
the filtered DNS. The models M0, M2 and M3 over-predict this quantity, since in
these simulations there are too many small-scale contributions. On the other hand,
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FIGURE 9. Comparison of the spatial maximum of positive spanwise vorticity as a function of time
obtained from the filtered DNS (o) and from LES using M0-6 (see table 1 for symbols).

in the simulation with M1 no positive spanwise vorticity is generated for a long
time, corresponding to the absence of strong vortex stretching. This result again
illustrates that the Smagorinsky model hinders the transition to turbulence. The
dynamic models M4 and M5 both give predictions which are relatively close to the
filtered DNS results, whereas the increase of positive spanwise vorticity starts too
early for M6.

3.2.8. Momentum thickness

From figure 8 we have already observed that the thickness of the mixing layer
depends on the subgrid model. This dependence is further clarified in figure 10, in
which the evolution of the momentum thickness, based on filtered variables,

=t Lo (-G () e

is shown. The operator (.) represents an averaging over the homogeneous directions
x1 and x3. Since the definition of the momentum thickness employs the mean velocity
profile, tests for the momentum thickness quantify the spreading of the mean velocity
profile. Figure 9 displays a short period of laminar growth (until ¢ = 20), followed by
a period in which the mixing layer grows considerably faster, visualizing the increased
mixing caused by turbulence.

The models M1 and M3 lead to worse predictions for the momentum thickness
than MO, indicating that with respect to this quantity LES without a subgrid model
is preferred over adopting M1 or M3. The slow growth of the momentum thickness
for M1 further establishes the observation that this model hinders the transition
to turbulence. The results for M4 are quite similar to MO, whereas the models
M2, M5 and M6 clearly yield improvement over MO and are relatively close to the
filtered DNS result. It is remarkable that the evolution of the momentum thickness is
almost identical for M2 and MS5. This indicates that for the momentum thickness the
improvement over MO is mainly due to the similarity model, since the eddy viscosity
part of M5 does not seem to affect this quantity. Other evidence for the small effect
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FiGUrEe 10. Comparison of the momentum thickness obtained from the filtered DNS (o) and from
LES using M0-6 (see table 1 for symbols).

of the dynamic eddy viscosity on the momentum thickness is that the curves for MO
and M4 almost coincide. The similarity model, however, already plays a role in the
early stages of transition. The time at which the increased mixing starts is relatively
early compared to MO. This behaviour is confirmed by the finding that growth rates
of linear instability waves are increased by the similarity model and are also closer
to the correct values.

3.2.9. Profiles of averaged statistics

Finally, we will compare x,-profiles of various statistics averaged in the homoge-
neous directions. These profiles will be calculated at ¢ = 70, which is well beyond the
starting point of the mixing transition process, but just before the final pairing has
been accomplished. In the definition of these profiles, v; = @; — (pil;)/{p) denotes a
fluctuating velocity field. In figure 11(a—c) the turbulent intensities (pv?)!/? are shown
for i = 1,2,3. The filtered DNS results demonstrate that the streamwise intensity is
somewhat larger than the normal and spanwise intensities. The turbulent intensities
are too large for MO, while they are under-predicted by M1; M3 gives reasonable
predictions for i = 2, but the peak for i = 1 is much too high, whereas the spreading
for i = 3 is too low. The remaining three models (M2, M4-6) are equally accurate;
the global discrepancies with the filtered DNS results are approximately the same,
although M6 is slightly better than the other models for i = 1. With respect to the
Reynolds stress profile —(pvv,), shown in figure 11(d), the dynamic mixed model M5
has to be preferred, since it provides the most accurate approximation of the filtered
DNS profile.

3.2.10. Summary and discussion

Table 2 summarizes the results for the subgrid models M1-6. The discrepancy
with the filtered DNS determines the quality of the result. In general, a result for a
given subgrid model is considered to be bad if its discrepancy with the filtered DNS
is larger than that between the filtered DNS and MO. If within a group of models
that provide good results denoted by ‘+°, one model performs even better than the
others, it is labelled with ‘“+4’. Simulations with M2 and M4-6 do give considerable
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FiGURE 11. Comparison of the profiles of the turbulent intensities {pv?)!/? for i = 1,2,3 (a,b,c) and
the Reynolds stress —(pviv,) (d) at t = 70 obtained from the filtered DNS (0) and from LES using
MO-6 (see table 1 for symbols).

improvements over MO; the incorporation of these models is useful in LES of the
mixing layer. Within the group of these four models, the dynamic mixed model (M5)
provides the most accurate results, compared to the filtered DNS results. Table 2
further shows that with respect to overall accuracy M6 is next to M5, then M4 and
then M2.

The subgrid models studied in this paper are based on the notion of similarity
and the need to represent the energy transfer to the subgrid scales through the
introduction of dissipation. The latter is required since the filtering operation removes
the dissipative scales. Models which do not explicitly contain dissipation (M2, M3)
indeed do not capture the correct energy transfer and consequently display too
much molecular dissipation. Conversely, the Smagorinsky model has no mechanism
to determine the proper amount of subgrid-scale dissipation. However, such a
mechanism can be provided by the similarity hypothesis.

The assumption of similarity implies that the turbulent stresses display a univeral
behaviour in the inertial subrange. This assumption is not only used explicitly in
the similarity and gradient models, but also implicitly in the dynamic approach.
In particular, similarity justifies the use of one model at the different length scales
appearing in the Germano identity (15) (Carati & Vanden Eijnden 1996). This
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Figure M1 M2 M3 M4 M5 Mo6
Total kinetic energy 2 — + — 0 ++ +
Subgrid dissipation 3(a) - + - ++ + +
Molecular dissipation 3(b) — + + + + +
Backscatter 4 - 0 — — 0 0
Component 7, 5 — + 0 _ 4 +
Energy spectrum A(k) 5 — — — + ++ 0
Vorticity in a plane 6,7 - - — + ++ +
Maximum vorticity 8 — — — + + 0
Mmomentum thickness 9 — + — + 4t
(vyo1)'/2 10(a) — + — + T o4y
(va0)!/? 10(b) - + + + 4 +
(vs03)'2 10c) -  + 0 + + +
—(viv2) 10(d) — - - 0 ++ +

TaBLE 2. Summary of the results for M1-6. The symbols —,0 and + refer to bad, reasonable and
good results, respectively. Furthermore, ++ is better than +.

approach has been shown to provide an accurate prediction of the subgrid dissipation
(cf. M4 in figure 3a). In combination with an explicit similarity model (M5, M6) the
dynamic approach results in a too large subgrid dissipation. This could be explained
as follows. For the calculation of the tensor H;; in (23) two consecutive applications
of the test filter are needed. Thus the similarity assumption is required to hold over a
much larger range of scales. For the larger scales this is generally less valid, leading
to a too small correlation between H;; and M;; appearing in (24). This is consistent
with the findings of Liu et al. (1994b) and leads to an over-prediction of C,. For the
Reynolds number considered in this section this over-prediction is to a large extent
balanced by the under-prediction of the molecular dissipation when using a dynamic
model. This suggests that model M4 performs relatively better at higher Reynolds
numbers, where the molecular dissipation is even smaller. This is the subject of the
next section.

We did not include results for the non-dynamic mixed model (M2 plus M1, Bardina
et al. 1984), nor for the non-dynamic Clark model (M3 plus M1, Clark et al. 1979).
However, we did run simulations with these models. The results were similar to
those obtained with M1, in particular with respect to the excessive dissipation in the
transitional period.

Each subgrid model was used in combination with the top-hat filter. The filter is
explicitly used in filtering the DNS data and in LES with M2, M4, M5 and M6, but
is only formally used in M1 and M3. Piomelli, Moin & Ferziger (1988) compared
the spectral cut-off and the Gaussian filter in combination with several models and
they advise using M1 with the spectral cut-off and the mixed model (non-dynamic
version of M5) with the Gaussian filter. The Gaussian and top-hat filter are very
similar (see the Appendix and Vreman et al. 1994a) and we verified that results of the
M4 and M5 simulations do not change much if we use the Gaussian filter instead of
top-hat. In M1 the filter is not explicitly used; hence the conclusion that this model
is excessively dissipative during transition would not change for a spectral filter, even
if the results were compared with spectrally filtered DNS data.

The 323-grid is not too coarse for proper a posteriori tests. The results in this paper
show that LES on this grid is in satisfactory agreement with the filtered DNS, provided
an appropriate subgrid model is used. The results would of course be better if we
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increased the resolution to 643, but then even the coarse-grid DNS (MO) would give
reasonable results and the subgrid dissipation would not be larger than the molecular
dissipation. Using the 323-grid, however, the subgrid dissipation is about three times
higher than the molecular dissipation (figure 3), indicating that a subgrid model is
needed, since the largest part of the dissipation is caused by the small subgrid eddies.
On the other hand the 32* grid is sufficiently fine to discern the largest eddies, namely
the four spanwise rollers, subsequently pairing to two, and finally to one roller. The
resolution of 32 uniformly spaced points in the normal direction on a uniform grid
is not too small for the representation of the mean profile, which can be concluded
from the following arguments. Firstly, we have repeated the full comparison on a
LES grid of 32 x 64 x 32 points and this set of simulations confirmed the findings
in this section. Secondly, it has to be noticed that according to the definition of the
initial conditions in LES, filtered mean profiles are used, which are smoother than
the original mean profiles. The instability resulting from this profile is essentially the
same as in the filtered DNS, since for all models considered (except for M1) LES
on the 323-grid was observed to reproduce the four-roller structure that results from
the primary instability. Furthermore, the flow structure in the turbulent regime (e.g.
figures 1c, 8) suggests the choice of equal grid sizes in all three directions.

4. Self-similarity

In this section we perform LES of the temporal mixing layer at a higher Reynolds
number and in a larger domain using the subgrid models M0-6. Although the
simulation described in §3 contained a transition to small scales, the size of the
domain allowed two successive pairings only and the Reynolds number was relatively
low (50) in order to enable DNS. Compared to DNS, LES should be able to simulate
flows in a larger domain and at higher Reynolds number at the same computational
cost.

The temporal mixing layer in this section is simulated at Re = 500, based on the
reference values defined in §2.1. The calculation is performed on a grid with 120* cells
and the computational domain is large, L = 120. This size is equal to eight times
the wavelength of the fundamental linear instability. Hence, the flow allows three
successive pairings before it saturates. Uniform noise is used to perturb the initial
mean flow (amplitude 0.05 and multiplied with e=2/4), in contrast to §3.1 where an
eigenfunction perturbation was used. The LES employ the top-hat filter with the
basic filter width equal to twice the grid spacing.

At this Reynolds number there are no DNS results to compare with, but we can
verify whether the flow is self-similar. A temporal mixing layer is self-similar if the
development of the shear layer thickness is linear in time and profiles of normalized
statistical quantities at different times coincide. The common opinion is that turbulent
mixing layers display self-similar behaviour, provided the Reynolds number is high
and the computational domain is large and the simulation is performed sufficiently
far in time (Rogers & Moser 1994; Vreman et al. 1996¢). Experimental work supports
the notion of similarity (Brown & Roshko 1974; Campagne, Pao & Wynanski 1976;
Bell & Mehta 1990). The specific self-similar state, however, is not unique but depends
on the initial forcing (Dimotakis & Brown 1976).

The evolution of the momentum thickness is shown in figure 12 for the subgrid-
models M1 and M4-6. None of the simulations is fully self-similar, since in each
case the momentum thickness curve is not perfectly straight in the turbulent regime.
The most self-similar case is obtained with the dynamic eddy-viscosity model M4,
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FIGURE 12. Evolution of the momentum thickness d(t) obtained using M1 (solid), M4 (dashed),
M5 (dotted) and M6 (dashed-dotted).

where d(t) is approximately linear between ¢t = 100 and 250. The other two dynamic
models, M5 and M6, lead to a faster growth than M4 between t = 40 and 130, but
to a slower growth afterwards.

Like the results in §3, the present results show that M1 is too dissipative in the
laminar regime, where the laminar increase of momentum thickness is too large.
Although the model does not prevent the transition to turbulent flow, the transition
is delayed and the sudden growth of the momentum thickness starts relatively late
(at t = 175). Furthermore, the momentum thickness does not increase linearly in the
turbulent regime, showing that the mixing layer is not self-similar. The M1 results
shown were obtained using a Smagorinsky constant of 0.17 (Lilly 1967; Schumann
1991). In order to study the sensitivity to the Smagorinsky constant we repeated
the M1 simulation in this section with a lower coefficient, Cs = 0.10. This value
was proposed by Deardorff (1970) in LES of turbulent channel flow, whereas Moin
& Kim (1982) used an even lower value. Compared to the dynamic models, M1
with Cg = 0.10 was still much too dissipative in the first part of the simulation and
the transition to turbulence was still relatively late (¢t = 100). After transition had
occurred, the momentum thickness did not increase linearly, like in the simulation
with Cy = 0.17.

Results for M0, M2 and M3 are not shown, because the simulations with these
models become unstable before + = 100 and, therefore, cannot be completed. The
reason is the insufficient dissipation from resolved to subgrid scales. We have noticed
too much energy in the small scales in the simulations at lower Reynolds number
(§3.2.4) and this leads to unstable simulations at high Reynolds number. We found
that these simulations were also unstable with a ‘kinetic energy-conserving’ scheme.
Even when the total kinetic energy cannot increase, there can be too much energy
in the small scales, leading to instability through the thermodynamic variables (as
indicated in §2.1).

The evolution of the dynamic model coefficients at x, = 0 is shown in figure 13
together with the value of CZ in M1. Indeed, Cs = 0.17 is initially much too large and
is even too large in the turbulent regime. The alternative value tested, Cs = 0.1 is also
too large initially, but too low in the turbulent regime. The Smagorinsky coefficient
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FIGURE 13. The dynamic model coefficient C; at x, = 0 in LES with M4 (dashed), M5 (dotted)
and M6 (dashed-dotted), and the value of C2 in M1 (solid).

corresponding to the average value of the dynamic coefficient of M4 in the turbulent
regime would be Csg = 0.13. The eddy viscosities in M5-6 model a part of the
turbulent stress tensor only and therefore the dynamic coefficients in M5-6 are lower
than in M4. However, in this case the differences between the model coefficients of
M4—-6 are smaller than at low Reynolds number (Vreman et al. 1994b), which implies
that incorporation of a similarity or gradient part is less effective in the prediction of
the subgrid dissipation if the Reynolds number is high.

Statistical quantities are self-similar if profiles at different times coincide after the
appropriate normalization. In the following we consider the Reynolds stress profiles,
Rij = (pvw;), with v; defined as in §3.2.8, and the dissipation profile (€) = (e, + €,4),
with ey, and €, defined as in §3.2.2. These profiles are functions of time and the
normal direction x,, which scales with d(¢). The Reynolds stress tensor and the
dissipation can be scaled by p;(AU)? and p(AU)*/5(t) respectively, where p; is the
upper free-stream density and AU is the velocity difference between the free streams.

The resolved turbulent kinetic energy %qu at x, = 0 and the integrated dissipation
J(e)dx, are shown in figure 14. In self-similar flow these quantities should not depend
on time. From this figure it appears that an approximate self-similar state is best
reached by M4. Due to the finite size of the computational domain the statistics are
expected to decay after some time, but compared to M4 the decay starts relatively
early for M5-6. The somewhat over-predicted subgrid dissipation by M5-6 noticed
in §3.2.2 is a possible reason for the relatively early decay. In these LES at high
Reynolds number, the fraction of the dissipation due to molecular viscosity is low
(less than 10% in the turbulent regime). Compared to €, the amount of backscatter
generated by M5-6 at high Reynolds number is less than 0.3%, which is even smaller
than at low Reynolds number (§3.2.3).

In principle self-similarity should be verified not for the resolved but for the
unfiltered flow field. The momentum thickness is based on the mean velocity field,
which is smooth and therefore hardly influenced by the use of filtered instead of
unfiltered variables. With respect to the dissipation the subgrid part () is dominant
and was included in figure 14(b). In the following we also address the subgrid



Large-eddy simulation of the turbulent mixing layer 383

0.07
0.25 0.06
> 5
8 020 g 005
e &
S 2 0.04
F 0.15 S
o
é 0.10 = o
: .
= 'sg 0.02
F
0.05 0.01
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time Time

FiGURE 14. Evolution of the resolved turbulent energy %Rq,, at x, = 0 (a) and dissipation f(e)dxz
(b) obtained from LES with M1 (solid), M4 (dashed), M5 (dotted) and M6 (dashed-dotted).

contribution to the Reynolds stresses. The Reynolds stress tensor defined for unfiltered
variables, r;; = (pw;w;) with w; = u; — (pu;)/(p), can be related to the resolved
Reynolds stress R;; as follows:

rij ~ Rij + <‘L'ij>. (41)

This approximation used by e.g. Deardorff (1970) is exact in incompressible flow if
the LES filter is a ‘generic’ filter, which implies (f) = (f) (Germano 1996). (Using
the DNS data from §3, we found that (t;;) estimates r;; — R;; with an error of about
10%.)

Figure 15(a) displays the profile of the resolved Reynolds stress Rj; obtained with
M4 at three distinct times, where y = x,/0(t). The curves approximately coincide,
confirming that the simulation is reasonably self-similar during this period of time,
even for the resolved Reynolds stress. The subgrid contribution (z;;) cannot be
directly obtained from M4, because the trace 7,, in M4 is not modelled and implicitly
added to the pressure. Estimates for the trace in terms of the eddy viscosity exist
(e.g. Deardorftf 1970), but then it is still unclear which part of the trace corresponds
to 71;. We therefore estimate (ry;) using the similarity model for 7{;. The results in
figure 15(b) show that the profiles of the subgrid contribution are not self-similar, but
that at later times a relatively smaller part of the Reynolds stress is in the subgrid
scales. Furthermore, the subgrid contributions are added to the resolved part of
the Reynolds stress and the results are also plotted in figure 15(b). With respect to
self-similarity figure 15(a) and 15(b) do not differ much.

Self-similarity in itself may not be sufficient evidence that a physically realistic flow is
simulated. For that reason we compare the centre value of the turbulent kinetic energy
%qu (figure 14a) with the (untripped) experimental data from Bell & Mehta (1990,
figure 4a—c). The experimental value in the self-similar region, 0.035, corresponds to
0.035(4U)* = 0.14 in our scales. It was somewhat higher (0.043(4U)? = 0.17) just
before self-similarity was achieved. The simulation results with the three dynamic
models M4-6 are in reasonable agreement with these experimental observations. If
we assume that the subgrid contributions increase the curves in figure 14(a) about
10% (see figure 15b), the M4 simulation slightly over-predicts and M5-6 slightly
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FIGURE 16. Positive (dotted) and negative (solid) contours of spanwise vorticity in the plane

x3 =90 at t = 160 (a) and t = 240 (b). The contour increment equals 0.05.

under-predict the experimental result. Exact agreement with experimental statistics
is not required, because, as remarked above, the specific self-similar state is probably
not unique.

Finally, the spanwise vorticity in a planar cut of the domain at two distinct times
in the M4 simulation is shown in figure 16. The large-scale roller structures in
this simulation starting from uniform noise appear to be less prominent than in the
simulations starting from an eigenfunction perturbation (see also Rogers & Moser

1994).
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5. Conclusions

In this paper we have presented a posteriori tests of LES of the temporal mixing
layer using six subgrid models: Smagorinsky (M1), similarity (M2), gradient (M3),
dynamic eddy viscosity (M4), dynamic mixed (M5) and dynamic Clark (M6). The
first three subgrid models form the basis for the latter three dynamic models. Two sets
of simulations have been performed, at low and high Reynolds number respectively.
The LES in the first set have been compared with DNS data, whereas in the analysis
of the second set of simulations we focused on other aspects, such as self-similarity.
The conclusions drawn from the first set of simulations are presented first.

In the first set of simulations the quality of a model is determined by the discrepancy
of its results with the filtered DNS results. Furthermore, in order to determine whether
the inclusion of the subgrid model is useful, comparisons with a coarse-grid simulation
without any subgrid model (MO) have been performed. A summary of the results
is found in table 2. When the models are arranged with respect to the overall
accuracy of their results, the following sequence is obtained: M5, M6, M4, M2, M3,
MI1. The results of the latter two models are in general worse than the MO results;
incorporation of these subgrid-models in LES of the mixing layer is not useful. The
other models in general give better results than MO. The overall results indicate that
the dynamic mixed model displayed the best performance when compared to filtered
DNS results. The dynamic mixed model was also observed to yield the most accurate
results in comparative tests of subgrid models in LES of a driven cavity (Zang et al.
1993) and a rotating boundary layer (Wu & Squires 1995).

The Smagorinsky model was found to be excessively dissipative in the transitional
regime. Comparison with the filtered DNS demonstrated that M1 strongly influences
the linear evolution of disturbances, since the four-roller structure is not reproduced.
Furthermore, M1 hindered the transition to turbulence. No positive spanwise vorticity
was generated, the sudden growth of the momentum thickness did not occur and
turbulent intensities and Reynolds stress profiles were under-predicted.

Although from the a priori point of view M2 and M3 are very similar and both
provide highly accurate representations of the turbulent stress tensor (Vreman et
al. 1995) they behave very differently in actual simulations: M2 yields reasonable
results, whereas M3 leads to instabilities if no limiter is used. However, even with the
incorporation of a limiter, M3 produces too many small scales and leads to inaccurate
results for integral quantities and e.g. the streamwise turbulent intensity. In order to
stabilize the gradient model, the inclusion of a dynamic eddy viscosity as in M6 is
preferred over a limiter (M3), since the first case leads to more accurate results.

Examination of the energy spectra demonstrates that only the models which contain
a dynamic eddy viscosity (M4-6) provide the correct amount of small scales. Due
to insufficient dissipation of small scales by the subgrid model, the flow simulated
with M0, M2 and M3 contains too many small structures. This gives rise to a higher
molecular dissipation, which supplements the insufficient small-scale dissipation of
the model. Although the dissipation for small scales is insufficient, the total energy
dissipation provided by M2 was observed to be reasonable, since too much energy
was subtracted from the large scales. It is remarkable that the dynamic eddy-
viscosity model M4 provides satisfactory results, although it severely under-predicts
the magnitude of the individual turbulent stress components. An adequate dissipative
behaviour appears to be more important than a good prediction of the individual
turbulent stresses. A suitable mechanism for this dissipation is provided by the
similarity assumption used in the dynamic approach.
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The models M2 and M5-6 have mechanisms to mimic the backscatter of energy
from subgrid scales to resolved scales, but do not accurately predict it. However,
actual LES of the mixing layer seems to require only a small amount of backscatter.
The same is observed from the filtered DNS results, in which the backscatter is about
10% of the subgrid dissipation. Hence, a poor representation of the backscatter by
the subgrid models is not too much of a problem.

In this paper we have presented a posteriori tests. In a priori tests the six models
correlate with the real turbulent stress as follows: the correlation is high for M2 and
M3, somewhat lower for M5 and M6 and very low for the eddy-viscosity models M1
and M4 (e.g. Liu et al. 1994a; Vreman et al. 1995). Meneveau (1994) remarks that a
priori testing is often too pessimistic, i.e. a low correlation does not necessarily lead to
poor results, which is confirmed by our results obtained with M4. However, a priori
testing can also be much too optimistic, since a high correlation does not necessarily
lead to good results as our results for M2 and M3 show.

The second set of LES with M0O-6 concern a mixing layer at a much higher
Reynolds number in a larger computational domain (§4). No DNS results are
available to compare with, since the Reynolds number is too high to accurately
resolve all scales with the present supercomputers.

Since the amount of subgrid dissipation obviously depends on the value of the
Smagorinsky constant Cg, the dissipative behaviour of the Smagorinsky model could
be better using a lower value for Cs. Therefore, in this case we also used the lower
Cs = 0.10 in the simulation with M1. The model was still too dissipative in the
laminar regime; the transition occurred, but too late, and in the turbulent regime the
model was not sufficiently dissipative. Hence, a varying model coefficient that attains
the appropriate value in transitional and turbulent regimes is required. The dynamic
models meet this requirement.

The simulations with M0, M2 and M3 become unstable in the turbulent regime.
MO has no subgrid dissipation and the dissipation of M2 and M3 is insufficient to
prevent an excessive amount of small scales.

The three dynamic models M4-6 adequately suppress the generation of small
scales, but there are differences between the results of the three simulations. Within
this group of models the dynamic eddy-viscosity model yields the most self-similar
turbulent statistics.

Despite the large improvements originating from the dynamic approach, the re-
sults presented in this paper still show considerable discrepancies in several flow
quantities, such as the profiles of the turbulent intensities and the momentum thick-
ness. Additional improvement of subgrid modelling may be guided by the present
results.

The results in this paper apply to the mixing layer at low Mach number. Details of
the comparison may be valid only for this case, but the global features are expected
to be more generally applicable. Examples of such global features are: the excessive
dissipation of the Smagorinsky model, the insufficient dissipation of small scales by
the similarity and gradient models, the relatively adequate subgrid-dissipation by
the dynamic models and the under-predicted magnitude of the individual turbulent
stress components by the dynamic eddy-viscosity model. In order to substantiate
this, we are at present studying more complex flows, which are physically realizable
and admit a quantitative comparison with experimental results. Examples of such
flows are the spatial mixing layer and (separated) boundary layer flow. Also, the
formulation of the LES approach to transonic compressible flows is subject of
study.
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Appendix

The dynamic procedure requires formulations of the subgrid model at the F-level
and the FG-level. The F-level is associated with the filter width 4, the G-level with the
filter width 24 and the FG-level with the filter width k4. The value of « equals 2 for
the spectral cut-off filter (Germano et al. 1991) and \/E for Gaussian filters (Germano
1992). For spectral cut-off and Gaussian filters, x can be determined exactly, since the
consecutive application of two of these filters yields a filter function of the same type.
However, the consecutive application of two top-hat filters does not yield a top-hat
filter and the value of x should not be 2 (as used for instance by Zang et al. 1993).
In this Appendix we argue that in conjunction with top-hat filters the optimum value
of x equals /5.

We denote the original filter function by G, with filter width a = 4 and the test-
filter function by G, with filter width b > a. The filter function corresponding to the
consecutive application of these two filters is denoted by H and satisfies the following
formula:

H(y) = /Q Goly — 2)Ga(z)dz. (A1)

If G, and G, are spectral filters, H is a spectral filter as well with filter width b,
whereas if G, and G, are Gaussian filters, H is a Gaussian filter with filter width
(a®> + b*)'/2. However, the consecutive application of two top-hat filters is not a
top-hat filter; the filter function H has a trapezoidal shape. In LES employing the
dynamical procedure with top-hat filters, the filter width of H is usually assumed to
be the same as the filter width of G, (Zang et al. 1993). However, this approximation
cannot be correct, because the H-filter will certainly render smoother signals than the
G,-filter, so the filter width associated with H should be larger than b. We proceed
to show how an appropriate value for the filter width of H can be found. Since
the three-dimensional filter function is usually a product of three one-dimensional
filter functions, the analysis can be performed in one dimension. Suppose that H is
the trapezoidal filter function resulting from the consecutive application of two one-
dimensional top-hat filter functions G, and G, with b > a. This yields the following
expression:

(1/ab)(y + (b +a) if —i(b+a)<y<—L1b—a),

i _Lp_ I(p—
H(y) = (1/b) 1 %fl b—a)<y <l Lb—a), (A2)
—(1/ab)(y — 5(b+a)) if 3(b—a) <y <3(b+a),
0 if [y = 1(b+a).

We next find an optimal approximation of H by a top-hat filter function G., given by

/e if —le<y<ie
G.(y) = 2 27 A3
(y) { 0 iflyl=1c. (A3)
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For this purpose we minimize the L,-norm of the error, which is a function of c:
o(c) = |G — H. (A4)

The choice of the L,-norm has the advantage that the error is also minimum in
spectral space, due to Parseval’s theorem. The minimum value of ¢ will certainly
satisfy b —a < ¢ < b+ a. In this range the square of the error equals (after some

calculation)
1 a b+a 1/[a b ¢
2_ 1 a4 i{a 9 <
OO =5 =3+ +c<2b+2a)+2ab' (A5)

Minimisation of the error requires

4 =o, (A6)
dc

which finally yields

c=(a*+bH"2 (A7)
It is remarkable that this relation, which represents an optimal approximation for
top-hat filters, is identical to the exact relation for Gaussian filters. Furthermore

it appears that when equation (A7) is satisfied for top-hat filters, not only is d(c)
minimum, but also the second moments of G. and H are equal:

/2 (b+a)/2
/ VG ()dy = / VH(y)dy. (AS3)

/2 —(b+a)/2

Usually the ratio between the filter width of the test and the original filter is equal to
2 (b = 2a), in which case equation (A 7) gives ¢ = ﬁa, which corresponds to k = ﬁ
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