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Turbulence characteristics of vertical air–solid pipe flow are investigated in this paper.
Direct numerical simulations of the gas phase have been performed, while the solid
particles have been simulated by a Lagrangian approach, including particle collisions.
The modelling of wall roughness is shown to be important to obtain agreement with
experimental data. Reynolds stresses and Reynolds stress budgets are given for both
phases and for a wide range of solid–air mass load ratios (mass loads), varying from
0.11 to 30. Air turbulence intensities, Reynolds shear stress, and turbulence production
reduce with increasing mass load. The mean air profile does not alter for low mass
loads. In this regime, a simple theory predicts that the reduction of air turbulent
production relative to unladen turbulent production is approximately equal to the
mass load ratio. The insight that the solids Reynolds shear stress can be significant,
even for low mass loads, is essential for this explanation. It is shown that at least two
mechanisms cause the turbulence reduction. In addition to the classically recognized
mechanism of dissipation of turbulent fluctuations by particles, there is another
suppressing mechanism in inhomogeneous flows: the non-uniform relative velocity
of the phases, created because particles slip at the wall, collide, and slowly react
with the continuous phase. Investigation of the air turbulent kinetic energy equation
demonstrates that the relative reduction of air pressure strain is larger than the
reduction of turbulent production and dissipation, and pressure strain may therefore
be a cause of the reduction of the other quantities. The fluctuational dissipation
induced by the drag forces from particles is small compared to the other terms,
but not negligible. For intermediate and high mass loads the air turbulence remains
low. The relatively small turbulence intensities are not generated by the standard
turbulent mechanisms any more, but directly caused by the particle motions. The
particle–fluid interaction term in the turbulent kinetic energy equation is no longer
dissipative, but productive instead. On increasing the mass load, the radial and
azimuthal fluctuations of the particles grow. The corresponding reduction of solids
anisotropy is an effect of the inter-particle collisions, which act as a solids pressure
strain term. For intermediate and high mass loads, fluctuational drag force and
particle collisions appear to be the relevant dissipation mechanisms in the solids
fluctuational energy equation. In contrast to the air turbulent production, the solids
‘turbulent’ production term has the same level for low and high mass loads, while
it attains a clear local minimum between. With increasing mass load, large-scale
coherent turbulent fluid structures weaken, and eventually disappear. Simultaneously,
the fluid fluctuations at relatively small length scales are enhanced by the motion of
the particles. The highest particle concentration occurs near the wall for low mass
loads, but on increasing the mass load, the concentration profile becomes uniform,
while for the highest mass load particles accumulate in the centre of the pipe. Two-
point correlation functions indicate that the addition of a small number of small
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solid particles to a clean pipe flow increases the streamwise length scale of the
turbulence.

1. Introduction
Vertical two-phase pipe flow should be studied, both for practical and fundamental

reasons. First, the flow is a cornerstone for many engineering applications, such
as riser and downer flows, which are used in production processes of widely used
products. An example is the catalytic cracking of oil. It is important to understand the
essential features of two-phase pipe flows in order to optimize industrial processes and
thus make more economical use of the limited energy resources available. Secondly,
two-phase pipe flows are interesting from a fundamental point of view, in particular
if they are turbulent. More than a century ago O. Reynolds published measurements
of turbulent pipe flow, and since then this flow has probably been regarded as the
most canonical turbulent flow. It is intruiging to know in which way the principal
turbulence characteristics of this flow alter, when a small or larger amount of particles
is added.

1.1. Vertial gas–solid flow

The two phases considered in this paper are air and solid particles. For several decades
researchers have investigated vertical gas–solid flow in pipes and plane channels (e.g.
Lee & Durst 1982; Tsuji, Morikawa & Shiomi 1984; Kulick, Fessler & Eaton 1994).
Although it is hard to measure statistics of multiphase flows, valuable experimental
information on gas–solid wall-bounded flows is available (e.g. Tsuji et al. 1984;
Gore & Crowe 1989, Kulick et al. 1994; Caraman, Borée & Simonin 2003; Borée &
Caraman 2005; Brennen 2005).

Many research topics arise from the interactions between the two phases. For
example, when considering the effect of the solid phase on the gas phase, it is known
that the gas turbulence intensities are reduced when small particles are added (Kulick
et al.), while they might increase for relatively large particles (Tsuji et al.). The
reduction of gas turbulence intensities is best established for low Reynolds numbers;
for higher Reynolds numbers (>13 000), there is some controversy (Hadinoto et al.
2005). Why the turbulence intensities decrease or increase is not clear; it is often
assumed that the turbulent kinetic energy is subject to additional dissipation caused
by the drag force of particles or additional production caused by the wakes of particles
(see e.g. Yuan & Michaelides 1992).

An important example of the effect of the gas on the solid phase is particle
deposition (e.g. Young & Leeming 1997; Wang & Squires 1996; Wang et al. 1997;
Van Haarlem, Boersma & Nieuwstadt 1998; Zhang & Amahdi 2002; Reeks 1983),
which occurs as a result of the turbophoretic force, which drives particles towards a
wall. The amount of turbophoresis is quite sensitive to the small-scale turbulence (e.g.
Kuerten & Vreman 2005). According to the theory proposed by Young & Leeming
(1997), the deposition velocity depends on the slope of the wall-normal velocity
fluctuations at the wall. The theory has been successful, but as we will see in the
present paper, complications occur when particles bounce back off the wall.

The present paper attempts to increase the understanding of vertical gas–solid
pipe flow by investigating and analysing mean flow profiles, Reynolds stresses, and
integrated Reynolds stress budgets, for a wide range of solid–air mass load ratios
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(mass loads). The flow data on which the paper is based have been acquired by
numerical simulations that correspond to the vertical gas–solid pipe flow experiments
reported by Caraman et al. (2003), and Borée & Caraman (2005). These experiments
were performed for low and moderate average mass loads of 0.11 and 1.10 respectively.
The solid particles were glass-beads of 60 µm and 90 µm. The Reynolds number of the
reference experiments was low, about 5300, based on centreline velocity Uc = 4 ms−1

and diameter D = 2R0 = 2 cm, corresponding to Reτ = 133 ± 7, based on R0, the
radius of the pipe.

Because of the low value of Reτ , these experiments suitable for numerical
reproduction, since if the flow were unladen, the flow could be solved by means
of direct numerical simulation (DNS). For a large number of particles it is not yet
possible to perform DNS, because it is an onerous task to resolve the boundary
layers around all the particles, and because the geometry in which the Navier–Stokes
equations need to be solved is very complicated and time-dependent. Therefore, such a
DNS was not the basis for the investigations reported in the present paper. Instead, the
Navier–Stokes equations were solved in a standard non-moving cylindrical geometry,
and a discrete-particle model in the spirit of e.g. Hoomans et al. (1996) was attached
to the Navier–Stokes solver. This means that the motion of each individual particle
was calculated using the laws of Newton. All collisions of particles were taken into
account, while the coupling between the motion of the particles and the fluid was
modelled through the standard nonlinear drag law for spheres.

The same computational technique, Eulerian simulation of the continuous phase
and Lagrangian simulation of the particle motion, has been applied to particle-laden
plane channel flow (e.g. Wang & Squires 1996; Li et al. 2001; Yamamoto et al.
2001; Vreman et al. 2004) and to particle-laden pipe flow (Uijttewaal & Oliemans
1996; Portela, Cota & Oliemans 2002; Marchioli et al. 2003; Rani, Winkler & Vanka
2004). Li et al. (2001) calculated the air Reynolds stress budgets for plane channel
flow and found all of them to be reduced with increasing mass load. Compared to
these reductions, the particle dissipation term in the turbulent kinetic energy equation
remained small (see also Paris & Eaton 2001). Contrary to the older assumption of a
significant enhancement of dissipation by particles, these findings seem to indicate an
indirect effect of particles on turbulence.

1.2. Objectives

First, we will address the discrepancies between numerical simulations and
experiments, which are known to occur for four-way coupled simulations (e.g.
Yamamoto et al. 2001). We will see similar discrepancies for the pipe flow. However, it
will be demonstrated that these discrepancies can be reduced considerably if effects of
wall roughness are added to the discrete-particle model. Regardless of this addition,
the present discrete-particle model is four-way coupled. One-way coupled models
include only the effect of the fluid on the particles, two-way coupled simulations
add the influence of the particles on the fluid, while four-way coupled models also
incorporate the collisions between the particles. Taking existing work on plane channel
flows into account, the present work contains the first computations of particle-laden
turbulent wall-bounded flow which are four-way coupled, which use DNS for the
turbulence, and which are compared with experiments. Previous two- and four-way
coupled works used either large-eddy simulation of the fluid phase instead of DNS
(Yamamoto et al. 2001), or they presented cases for which no experimental results
were available at all (Li et al. 2001, Rani et al. 2004).
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Secondly, an equation for the turbulent production term will be derived from the
energy balance of the mean flow. The equation for the turbulent production relies
on an equation for the fluid Reynolds shear stress, deduced from the conservation
of momentum. Mito & Hanratty (2006) derived a similar equation for the fluid
Reynolds shear stress in plane channel flow. That work, conducted independently
of the present work, was published after the present paper was submitted. The
suggestion that the principle of conservation of momentum explains the turbulence
attenuation in inhomogeneous flows had already appeared in a footnote in Owen
(1969).

Here we suggest and prove numerically that at least two distinct basic mechanisms
are responsible for the turbulence attenuation in wall-bounded flows: (i) the unsteady
particle fluid force, which is known to lead to an additional dissipation term in the
turbulent kinetic energy equation; (ii) the non-uniformity of the mean relative velocity
profile, caused by the solids slip boundary condition, a large Stokes reponse time and
inter-particle collisions.

Thirdly, integrated Reynolds stress budgets for both phases will be presented, for
a wide range of mass loads. It is useful to present these quantities for the further
development of two-fluid continuum approaches, which will remain essential for the
simulation and description of industrial multiphase flows in the near future. Such
continuum models can now be validated against data obtained from Lagrangian
simulations, e.g. continuum models for particle dispersion, constitutive equations for
the rheological viscosity of the mixture, and closure models for the equation of particle
fluctuating kinetic energy (granular temperature). An example of such a validation
will be shown.

Fourthly, the effect of the computational domain size will be investigated. For this
purpose results will be presented for an extended domain. For several simulations the
streamwise length is larger than in the previously mentioned references on simulations
of channel and pipe flows. This will be relevant for small mass loads. Implications
for the streamwise length scale of the turbulence will be discussed by investigating
two-point correlation functions.

Fifthly, we will consider some high-mass-load cases to investigate how the flow
statistics develop if the solid phase becomes the dominant phase and collisions
become the primary mechanisms to generate and redistribute fluctuating energy in
the system. The highest particle volume fraction that will be considered equals 1.5 %,
which corresponds to a mass load of 30. These values are an order of magnitude
higher than in previous Euler–Lagrangian simulations of particle-laden pipe flow,
which in general did not include particle–particle collisions, except for a single case
at a volume fraction of 0.04 % (Rani et al. 2004).

The organization of the paper is as follows. Section 2 contains a specification
of the flow configuration, an overview of the simulations performed, and details
of the simulation method. The results and their explanations will be presented in
seven sections: the comparison with experimental flow profiles (§ 3), trends of mean
flow properties (§ 4) and Reynolds stresses (§ 5) for a wide range of mass loads, a
leading-order analysis for the turbulence attenuation by considering the dissipation
of the mean flow (§ 6), integrated values of the Reynolds stress budgets, the terms
in the Reynolds stress transport equation and in particular the role of pressure
strain in turbulence attenuation (§ 7), spatial structure of the flow, such as particle
concentration profiles, spectra, and snapshots of concentration and velocity fields
(§ 8), and discussion of diverse issues, such as streamwise length of the domain
and turbulence length scale, effects of bidispersed solids, influence of lift force,
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Flow case m dp [µm] Lz α0 [%] No. of particles St

C0 0 60 10D 0 0 –
C60a 0.109 60 10D 0.0053 29 400 4.0
C60b 0.226 60 10D 0.011 61 000 4.0
C60c 0.431 60 10D 0.021 116 300 4.0
C60d 0.543 60 10D 0.0264 148 000 4.0
C60e 0.766 60 5D 0.0372 103 000 4.0
C60f 1.081 60 5D 0.0525 147 900 4.0

C90a 0.115 90 5D 0.0056 4 600 9.0
C90f 1.090 90 5D 0.05 43 600 9.0
C90g 20.3 90 5D 0.99 813 000 9.0
C90h 30.5 90 5D 1.48 1 218 000 9.0

Table 1. Overview of simulated flow cases. The table specifies the mass load ratio m, the
particle diameter dp , the streamwise extent of flow section Lz, the average solid volume
fraction α0, number of particles, and the Stokes number St , based on D/Ub .

inter-particle drag, sensitivity to collision model parameters, and effects of inter-
particle collisions (§ 9). Conclusions will be summarized in § 10.

2. Approach
In this section we present the flow cases studied, the governing equations, and the

numerical implementation.

2.1. Flow cases

As mentioned in the introduction, we use the vertical gas–solid pipe flow experiments
reported by Caraman et al. (2003) and Borée & Caraman (2005) to define the flow
configuration for the simulations. Thus the diameter of the pipe, D = 2R0, is equal to
2 cm, and the centreline velocity of the unladen case, Uc, around 4 m s−1. The gravity
vector is pointing in the mean flow direction. The particles used in the simulations are
spherical, and they have a diameter of 60 µm or 90 µm and a density ρs = 2470 kg m−3,
corresponding to the density of glass beads. The density of the surrounding air, ρg ,
is equal to 1.2 kgm−3, and the kinematic viscosity ν equals 1.5 × 10−5 m2 s−1. The
unladen simulation results in uτ = 0.209 m s−1 and Reτ = 140, based on R0 and a bulk
velocity Ub = 2.98 m s−1. These values are within the reported range of measurement
errors. The air bulk velocity is maintained constant for all simulations.

The mass load m is the ratio of the solid and air mass loads, equal to α0ρs/ρg ,
where α0 is the average volume fraction. Table 1 specifies the simulated flow cases,
varying from m = 0 (unladen) to m = 30.4. One low and one moderate mass load
value correspond to the experimental works: 0.11 with dp = 60 µm corresponds to
Caraman et al. (2003), while 1.1 with dp = 90 µm corresponds to Borée & Caraman
(2005). While the former experimental work considered a monodispersed solid phase,
the latter incorporated a bidispersed particle distribution, where 87 % of the mass was
formed by 90 µm particles and 13 % by 60 µm particles. To simplify the simulation and
analysis of these complicated flows to some extent, only monodispersed simulations
will be presented in the figures, which means that the bidispersed experiment will
be compared with a monodispersed simulation for the dominant particle diameter,
dp = 90 µm.
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The length of the tube in the experiment was 2 m. In the simulations a cross-section
with length Lz is simulated. The standard value of Lz in DNS of pipe flow equals 5D

(e.g. Eggels et al. 1994); here we use 10D for five of the simulations listed in table 1.
The length of 5D is found to be too short between 0.2 < m < 0.5, but sufficiently long
outside these bounds (see § 9.3). Periodic boundary conditions are used to connect the
entrance and the exit of the cross-section. The streamwise pressure gradient, which is
needed to keep the air mass flux constant, is assumed to be spatially uniform.

2.2. Governing equations

The equations governing the fluid phase in the simulations are the incompressible
Navier–Stokes equations:

∇ · u = 0, (2.1)

ρg

(
∂u
∂t

+ u · ∇u
)

= −∇p + ρgν∇2u + ρggez + aextez +
1

(1 − α0)
f , (2.2)

where u is the air velocity vector (equal to zero if r = R0), p the periodic part of
the pressure, ez the downward pointing vertical unit vector, g = 9.8m s−2 the gravity
constant, aext (t) the external uniform streamwise pressure gradient component, and
f the sum of the drag forces exterted by the particles per unit volume. The porosity
1 − α is not carried inside the divergence operators; however the effect of its average
over the entire flow domain is incorporated by 1 − α0. Vreman et al. (2004) included
the spatial variation of the porosity in the fluid equations for particle-laden channel
flow computations, but they found it had no significant effects for α ≈ 0.013.

The Lagrangian equations that describe the motion of a single solid particle are:

dxp

dt
= vp, (2.3)

ρsVp

dvp

dt
= Fd,p + Fc,p + ρsVp g, (2.4)

where xp and vp are the position and velocity vectors of the particle centre. In
addition, Vp is the volume of the particle, while Fd,p and Fc,p represent the drag
and collision forces on the particle respectively. A precise description of the collision
model can be found in Hoomans et al. (1996), Hoomans (1999) and Deen et al. (2006).
The model incorporates each collision using a so-called hard-sphere approximation,
satisfying conservation of momentum and angular momentum. The rotational velocity
of each particle is included in the model and is only altered by collisions. Inelasticity
is included through a restitution coefficient er for normal forces, a Coulomb friction
coefficient µ, and a restitution coefficient β0 for tangential forces. The coefficients are
given realistic values (Hoomans 1999): er = 0.97, β0 = 0.33, µ = 0.1 for inter-particle
collisions, and friction coefficient µw = 0.3 for particle–wall collisions. According to
the literature, inter-particle collisions influence the statistics of both phases in wall-
bounded gas–solid flow. The effect is already noticable for particle volume fractions
around 10−4 (Yamamoto et al. 2001; Li et al. 2001), while a strong effect was
observed for particle volume fractions around 1 % (Vreman et al. 2004). Therefore,
all simulations presented in § 3 include particle collisions. Even in the case with volume
fraction of 0.5 × 10−4, collisions are found to be important, see the discussion in § 9.8.

The coefficients of friction µ and µw are only able to model the irregularities
of the surface that are negligible compared to the particle diameter. This means
that the standard collisional model is only applicable to relatively smooth walls.
Although this is sufficient for most aims of the present study, we need to consider
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wall irregularities that cause non-specular collisions, to validate the computational
model against experiments. The surface of the pipe wall is orders of magnitude larger
than the total contact surface involved in collisions up to mass loads around 1. This
means that, within a given simulation, no location on the wall is likely to be touched
by particles more than once. For this reason, we do not prescribe the irregularity of
the wall with a deterministic model, but we use a stochastic model instead. Various
models of wall roughness have been proposed (see e.g. Sommerfeld 1992). Since the
wall roughness was not measured in the reference experiments, a simple and cheap
model is considered here, which suffices to show that wall roughness can have a
large influence on the results. In the present wall-roughness model, we take for each
wall collision a random vector s. Each component of s is a uniform noise value
between −1/

√
3 and 1/

√
3, which ensures that ‖s‖ < 1. Instead of the wall normal n,

the vector (n + χ s)/‖n + χ s‖ is used to calculate post-collisional velocities after the
contact with the wall. Here the parameter χ is a specularity coefficient; the collisions
are specular for χ = 0. Caraman et al. and Boreé & Caraman did not specify the
wall roughness, so we do not know χ . However, they used an aluminium pipe, and as
aluminium is not very wear resistent, on the scale of the particle size, the wall-normal
vector was probably perturbed significantly, compared to the wall-normal vector of
a smooth pipe. We find that for χ = 0.2 the agreement between experiments and
simulations improves considerably, in particular in the case with m equal to 1.1
(see § 3). The specularity coefficient should probably depend on material properties,
particle diameter, r.m.s. of the wall surface variation, and certain material properties,
but these complications are ignored here.

As indicated in the introduction, the viscous boundary layers around the particles
are not resolved, but an empirical expression for the drag force on a sphere is used
instead. The justification of this approach relies on the smallness of the particle
diameter relative to the relevant turbulent structures. The Kolmogorov length scale
of the unladen pipe flow, ν3/4/ε1/4, based on the cross-sectional average dissipation ε,
equals 0.142 mm, which is considerably larger than the particle diameter, such that the
requirement of smallness is satisfied. The Stokes response time, τp = ρsd

2
p/(18ρgν),

equals 0.027 s for dp = 60 µm, and 0.062 s for dp = 90 µm. The Stokes number,
whose values based upon the mean time scale can be found in table 1, equals 20 for
dp = 60 µm, and 46 for dp = 90 µm, if it is based on the Kolmogorov time scale.
Since these values are reasonably large, the particles are expected to be relatively
unsensitive to the smallest turbulent eddies.

The mathematical expression used for the standard nonlinear drag force on a single
particle is:

Fd,p =
ρsVp

τp

(
1 + 0.15Re0.687

p

)
((Au)p − vp), Rep =

dp|(Au)p − vp|
ν

, (2.5)

where Rep is the particle Reynolds number. The subscript p denotes particle quantities
or fluid quantities evaluated at particle locations. The symbol A represents a linear
operator which calculates the local superficial air velocity on which the drag law is
based. In principle (Au)p should equal the air velocity outside the viscous boundary
layer of the particle. This means that instead of the local pointwise fluid velocity,
up , some average of the fluid velocity should be taken, (Au)p . For example, (Au)p
may represent a local average over 8Vp , which corresponds to an average particle
boundary layer thickness of about 1

2
dp . In the present paper A equals the identity

operator. Since the fluid grid cells are always larger than 8Vp , explicit smoothing by
A is not necessary to justify the application of the drag law. To specify the drag force
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term in the fluid equation, we partition the flow domain Ω into n disjunct sets Wn

and volumes |Wn| and write

f = A∗ f̂ , f̂ (x) = − 1

|Wn|
∑

{p|xp∈Wn}

Fd,p if x ∈ Wn. (2.6)

The function f̂ is a piecewise-constant function on Ω , while the operator A∗ is the
formal adjoint of the averaging operator A with respect to the continuous flow domain
Ω . When A is the identity operator, A∗ is also the identity operator. By definition, the

continuous integral of f̂ cancels the sum of the drag forces in the particle equation.
The formulation conserves the total momentum in the system exactly, provided A is
a normalized operator, which means that A should not affect constant fields. If A is

a normalized operator, then the integrals of f̂ and f = A∗ f̂ over Ω can be proven
to be equal (Vreman 2004). Thus A∗ is able to smooth a field without altering its
contribution to the global momentum.

The drag force is the most relevant force in the particle equation. Since ρs/ρg is
large in the present applications, we can neglect the added mass force and the fluid
pressure gradient term in the particle equation (e.g. Armenio & Fiorotti 2001). The
latter term also accounts for buoyancy effects. The lift force has a small influence; it is
also neglected, but a few simulations have been repeated with lift force included and
will be discussed in § 9.5. Bagchi & Balachandar (2003) concluded that the nonlinear
drag law without additional forces gives an accurate approximation of the force
experienced by a particle in a homogeneous turbulent fluid. Inclusion of additional
forces or averaging the fluid velocity over several particle diameters before evaluating
the drag law did not improve the predictions for their test case.

2.3. Numerical implementation

In practice the continuous flow domain is discretized. It is convenient to define the
fluid Eulerian grid by the collection Wn. Each Wn represents a finite-volume cell, and
the centre of Wn corresponds to grid node yn. For the simulations in this paper the
fluid velocity in the drag law is specified by

(Au)p = u( yn) if xp ∈ Wn. (2.7)

This type of interpolation of the fluid velocities to the Lagrangian grid is the most
simple scheme. Although Au( yn) mathematically corresponds to a piecewise-constant
function on the flow domain Ω , the discontinuities arising do not cause problems
for the cases studied in this paper. First, finite discontinuities in the drag force
in the particle equation lead to continuous vp and continuous differentiable xp .
Secondly, the Stokes number of the particles is quite large, which means that the
particles are not sensitive to the smallest scales of the air turbulence. Provided the
fluid grid resolves the turbulence, the particles will be insensitive to the scale of
the interpolation, which is the Eulerian grid size. Existing studies indicating that a
high-order interpolation method is important apply to particles with small Stokes
numbers. Thirdly, we replaced the piecewise-constant approximations with linear
interpolations, by modifying equations (2.6) and (2.7). This did not affect any of our
conclusions (see § 9.2). Note that a linear approximation becomes complicated and
time-consuming in solvers with arbitrarily shaped grid cells. Fourthly, the piecewise-
constant approximation leads to an interesting property of the kinetic energy. Like the
continuous Euler–Euler formulation the Euler–Lagrange drag law in the piecewise-
constant approximation can easily be proven to be globally dissipative (Sundaram
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& Collins 1996). This property is quite attractive, since it contributes to achieving
numerical stability without the need of artificial dissipation or deliberately dissipative
numerical schemes.

The resolution of the fluid grid in the simulations is selected according to the widely
accepted resolution considerations for DNS of turbulent channel flow at Reτ,H = 180,
based on the half-width H of the channel. A suitable grid for turbulent channel flow
at Reτ,H = 180 in a domain with dimensions 4πH × 2H × 2πH typically contains
1283 cells. This resolution corresponds to h+ ≈ 18 and 9 in the stream- and spanwise
directions respectively and an average value of h+ ≈ 3 in the non-uniform normal
direction. In particular the spanwise resolution and the normal resolution near the
wall are critical; usually one requires about 10 cells in the wall layer 0 < y+ < 10
and approximately 10 grid points covering the distance of about 100 wall units (the
spanwise spacing of the streak structures).

Imposing these requirements on the present unladen simulation S0 with Reτ,R0
=

140, we select a cylindrical grid of 145 cells in the streamwise direction (
z+ = 20),
93 cells in the azimuthal direction ((r
θ)+ � 9), and 45 cells in the non-uniform
radial direction, corresponding to 
r+ ≈ 3 on average. The mapping function in
the non-uniform direction, r = R0 − R0 sinh(γ − γ ξ )/ sinh γ , with γ = 3.25 and ξ

uniformly spaced between 0 and 1 leads to a radial grid with 0.8 < 
r+ < 9.5,
while the first 11 points from the wall cover about 10 wall units. Near the wall the
radial and azimuthal grid spacings in wall units are somewhat smaller than in the
well-validated computation by Eggels et al. (1994), who calculated the unladen pipe
flow for Reτ,R0

= 180 using a second-order finite-volume method. The grid spacings
mentioned above are used for all simulations listed in table 1. This means that the
computations for Lz = 5D employ 73 cells in the streamwise direction.

The conservation of kinetic energy by convective terms is important for the
numerical accuracy of turbulent flow computations. Using a finite volume method
satisfying this criterion combined with discrete conservation of mass and momentum,
Verstappen & Veldman (2003) showed that for Reτ,H = 180 a turbulent channel flow
was accurately computed on a 64 × 64 × 32-grid, which, in terms of wall units, is
considerably coarser than the present grid. The second-order finite volume approach
adopted in the present work also satisfies the conservation criteria just mentioned. It
is a curvilinear collocated solver applicable to arbitrary structured grids, but in the
present work a cylindrical mesh is used. All fluid variables are stored in cell-centres
of the grid, arranged such that at the centre of the pipe there is no cell-centre, only
a cell-face with surface zero. However, several fluxes require values at the centre of
the pipe. These values are averaged from the 93 surrounding triangular cells, which
implies that the effective discretization stencil in cells touching the centreline becomes
relatively large. This results in a robust treatment of the singularity at the centre of
the pipe. To detect particle collisions efficiently a secondary mesh is adopted. This
mesh is rectangular, uniform and fully decoupled from the cylindrical mesh. It is
sufficiently coarse to detect all collisions, and sufficiently fine to find the next collision
quickly.

The equations for the particle locations and velocities are integrated with the
explicit Euler method. Because of the collisions each particle has its own time step.
The minimum time step is determined by the next collision, which is estimated by
dividing the minimum particle distance by the current normal velocity difference of
the two particles involved, which essentially is the Euler approximation. The contact
time between particles is infinitely small (‘hard sphere approach’). This event-driven
algorithm is efficient, but only first-order accurate in time (the implementation of
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higher-order time integrations to calculate the next time step is far from trivial).
Accuracy with the first-order method is maintained by taking a relatively small
maximum time step, 
t = 1.0 × 10−5 s.

The fluid equations are integrated with a constant time step, equal to 
t mentioned
above. The time integration uses the explicit second-order Adams–Bashforth scheme
for the convective terms, whereas explicit Euler is applied to the viscous terms and
the particle forces. It is not necessary to use a fully second-order scheme for the
fluid phase, while the collisional particle motion is first-order accurate. First-order
accuracy is sufficient because the time-step is small, only 0.028δν/uτ , corresponding
to a maximum Runga–Kutta number of 0.29 based on minimum circumfential grid
spacing and maximum CFL number of 0.06 based on streamwise velocity and grid.
The pressure gradient term in the fluid momentum equation is treated implicitly,
using backward Euler. Thus, the pressure is obtained from a Poisson equation, which
is solved on each time-step, using the BiCGStab method (van der Vorst 1992).

The unladen flow simulation is initialized with a mean profile plus a sinusoidal type
of perturbation. The flow evolves through a transitional period and becomes fully
turbulent. The statistical averaging is then performed between t = 0.5 s and t = 1.0 s.
An averaging period of half a second corresponds to a commonly accepted interval
of 10H/uτ in a plane channel flow with a half-width H = R0.

The particle-laden simulations start from a uniform particle distibution placed
in the instantaneous flow field of the turbulent unladen simulation at t = 1 s.
After a transient period (until t = 1.3 s), the statistical averaging is started for the
particle-laden simulations. The simulations are continued until approximately t = 1.8 s
(including the simulation with the highest number of particles). In a few cases we
extended the averaging period considerably, for example for case S90b, to confirm that
the intervals mentioned above were sufficiently long to achieve converged statistics.
Note that the corresponding experiments performed by Caraman et al. (2003) and
Borée & Caraman (2005) were for a pipe length of 2 m. Based on the bulk velocity
of 3 m s−1, the flow was followed in the experiments for a period of 0.67 s, which
probably included part of the transitional regime as well. This confirms that the final
value of t ≈ 1.8 s used in our simulations is sufficiently large.

3. Comparison with the reference experiments
For two cases, C60a and C90f, experimental results are available. In this section

we will consider the comparison between simulations and experiments. Results for a
smooth wall disagree with the experiments. However, the discrepancies will be shown
to become smaller when the model for wall roughness, introduced in § 3.2, is included.

3.1. Standard computational model

Mean fluid quantities for cylindrical velocity components, ur , uθ , and uz, are calculated
by standard averaging in the streamwise and azimuthal directions, and over time
between t1 and t2. Fluctuational components are defined; for example the radial

one is u′
r = ur − ur . The root mean square of this variable, u′

ru
′
r

1/2
, is the radial

turbulence intensity, also denoted by u′
r . The azimuthal and streamwise intensities are

similarly defined, while the air Reynolds shear equals u′
ru

′
z. Averages for the particle

phase are more complicated, since the particles are not uniformly distributed over
the homogeneous directions. For this purpose we consider mass-weighted averaging,
explained in the following.
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For particle statistics we define for an arbitrary quantity q , at particle centres,

αq(r) =
Vp

(t2 − t1)|Sr |

∫ t2

t1

⎛⎝ ∑
{p|xp∈Sr }

qp

⎞⎠ dt, (3.1)

where Sr with volume |Sr | is the cylindrical slice corresponding to the slice of all the
fluid grid cells at radius r . Using this formula, we can express the averages for the
volume fraction and for q by

α = α 1, q̃ = αq/α, (3.2)

where 1 denotes a function that equals unity at each particle location. Thus, we are
able to calculate mean profiles for the cylindrical particle velocity components, ṽr ,
ṽθ , and ṽz, and to define fluctuations, for example v′′

r = vr − ṽr . The solids radial
Reynolds shear stress is then

ṽ′′
r v

′′
z = ṽrvz − ṽr ṽz =

αvrvz

α
− αvr αvz

α2
, (3.3)

while the radial particle velocity intensity is calculated by ṽ′′
r v

′′
r

1/2
, also denoted by

v′′
r . The mathematical expressions for the solids azimuthal and streamwise Reynolds

stresses are similar to the radial one.
Next we compare simulations with experimental results and consider the two cases

for which experimental data are available: C60a (low m) and C90f (moderate m). The
mean profiles of both cases are shown in figure 1, streamwise intensities in figure 2,
radial intensities in figure 3, and Reynolds shear stresses in figure 4. Air profiles are
on the left and solids profiles are on the right. The air profiles were not measured for
case C90f. The figures also show the effects of the wall roughness model, since after
a careful investigation of numerous model variations (§ 9), wall roughness seems to
be the main reason for the discrepancies between simulations and experiments. The
velocities have been normalized with U0, the mean velocity of the unladen flow at the
centreline (4.0 m s−1 in the reference experiments and 3.96 m s−1 in the simulations).

We see that the calculated mean air profile for C60a (figure 1a) is approximately
on top of the unladen profile and the measurement data. The simulated friction
velocity is consistent with the measured friction velocity; the measured value for uτ

was 0.20 ± 0.01 m s−1, while the simulations produced 0.208 m s−1 for the laden, and
0.209 m s−1 for the unladen case. For the moderate m = 1.1, the difference between
the simulated laden and unladen air profiles is discernible, but still small, unless wall
roughness is included. Figure 1(d) shows that in the centre of the pipe the solids
velocity for the moderate mass load lags behind the air velocity if wall roughness is
included.

Near the wall, both simulation and experiment show a mean solids velocity that is
larger than the air velocity. Here simulations and experiments disagree, the difference
between the two phases being larger in the experiment. The inclusion of wall roughness
reduces this discrepancy as it makes the mean solids velocity more uniform, but the
improvement is only significant for the largest particles m = 1.1 (figure 1d). Inclusion
of inter-particle drag raises the solids velocity profile (§ 9.6), but not sufficiently to
bridge the entire gap with the experiments. Thus there remains considerable error
in the first measuring point from the wall. However, we need to be careful when
comparing near-wall statistics with the experiments, since the profiles were measured
in the free stream, 4 mm below the exit of the pipe. In case C60a the distance between
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Figure 1. Mean streamwise velocity for air (left) and particles (right). Simulations without
(thin solid) and with wall-roughness model (thick solid). Simulation results for unladen flow
are included as reference case (dotted). Symbols denote experimental data, from Caraman
et al. (2003) for dp = 60 µm and from Borée & Caraman (2005) for dp = 90 µm. (a, b) Case
C60a (m = 0.11 and dp = 60 µm). (c, d) Case C90f (m = 1.1 and dp = 90 µm).

the pipe radius and the first measuring point from the wall was only 0.5 mm, eight
times smaller than the distance from the exit. Thus the wake generated by the edge
of the pipe may have influenced the flow statistics close to the pipe radius. (The
experiments were performed with a two component phase Doppler anemometer.)

Next we consider the predictions of the Reynolds stresses. The simulations show
that the streamwise air turbulence intensity is not much affected by the particles for
the small mass load case (figure 2a). However, the air radial intensity and air Reynolds
shear stress are more influenced by the particles; the profiles are considerably lower
than the unladen ones (figure 3a and figure 4a). There is a much stronger reduction
of turbulence in the case with moderate mass load; the air Reynolds shear stress is
even zero (figures 2c, d–4c, d). Both in experiment and simulation the solids Reynolds
shear stress appears to be larger than the air Reynolds shear stress (figure 4).

The measured and simulated solids streamwise intensity profiles are different,
although their cross-sectional averages are approximately the same. The largest
discrepancy between experiments and simulation without wall roughness concerns



Turbulence characteristics of particle-laden pipe flow 247
A

ir
 R

M
S

 s
tr

ea
m

w
is

e 
ve

lo
ci

ty
/U

0

0.2 0.4 0.6 0.8 1.00

0.04

0.08

0.12

0.16

0.20
(a)

S
ol

id
s 

R
M

S
 s

tr
ea

m
w

is
e 

ve
lo

ci
ty

/U
0

(b)

r/R0 r/R0

0.05

0.10

0.15

0.20

0.05

0.10

0.15

0.20
(c) (d )

0.2 0.4 0.6 0.8 1.00

A
ir

 R
M

S
 s

tr
ea

m
w

is
e 

ve
lo

ci
ty

/U
0

0.2 0.4 0.6 0.8 1.00

S
ol

id
s 

R
M

S
 s

tr
ea

m
w

is
e 

ve
lo

ci
ty

/U
0

0.2 0.4 0.6 0.8 1.00

0.04

0.08

0.12

0.16

0.20

Figure 2. As figure 1 but for streamwise intensity. Additional experimental solids data at the
centreline are included in (b): 50 µm glass particles (triangle), 70 µm copper particles (diamond)
(from Kulick et al. 1994), and 70 µm glass particles (circle) (from Hadinoto et al. 2004). (a, b)
Case C60a (m = 0.11 and dp = 60 µm). (c, d) Case C90f (m = 1.1 and dp = 90 µm).

the solids radial intensity. However, figures 1–4 show that (in particular in case C90f)
better agreement with experiments is obtained when the simulations include wall
roughness. The simulations are in line with the experimental observation that wall
roughness enhances the wall-normal intensity of the solids (Benson, Tanaka & Eaton
2005).

Caraman et al. (2003) argued that the large solids radial velocity fluctation was not
caused by wall roughness, but by inter-particle collisions, since the increase of radial
velocity fluctuations was not limited to the near-wall region. They argued that in their
experiments the Stokes response time for case C60a (0.027 s) was smaller than the
average time particles needed to fly from wall to centre (R0/v

′
r ≈ 0.07 s), such that

inter-particle collisions were necessary to transport the large radial fluctuations of
particles to the centre of the pipe. Indeed, even for C60a inter-particle collisions have
a clear effect (see § 9.7). However, a large radial fluctuation extending to the centre
of the pipe does not imply that wall roughness is irrelevant. Both mechanisms play
a role: wall roughness produces a larger solids radial fluctuation, and inter-particle
collisions assist in transporting the fluctuation from the wall to the centre of the pipe.
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Figure 3. As figure 2 but for radial intensity (a, b) Case C60a (m = 0.11 and dp = 60 µm).
(c, d) Case C90f (m = 1.1 and dp = 90 µm).

The solids intensities at the centreline are also compared with other experimental
data; figures 2(b) and 3(b) include centreline values from the pipe flow experiments by
Hadinoto et al. (2004) and the plane channel flow experiments by Kulick et al. (1994).
The former corresponds to Re = 8300 and the latter to Re = 23 000, based on air
bulk velocity and pipe diameter or channel width. The intensities taken from Kulick
et al. correspond to cases with a mass load of 0.10, containing 50 µm glass or 70 µm
copper particles, with St equal to 3.5 and 24 respectively, based on bulk velocity
and channel width. Hadinoto et al. used a copper pipe and 70 µm glass particles
(St = 23). Their experiment was for a much higher mass load than 0.11, namely
0.7. Nevertheless, the centreline axial intensity has been plotted on figure 2(b), since
the dependence of the centreline axial intensity on mass load appears to be weak
(compare figure 2b with 2d). (Radial intensities were not measured by Hadinoto et al.)
If we compare the additional experimental data with the reference experiments, we
observe large differences. It seems unlikely that these differences were entirely caused
by the differences in Reynolds number, Stokes number, particle diameter, choice of
velocity scaling or duct geometry. It is more likely that non-measured properties,
for example wall roughness or electrostatics, which is hard to suppress completely,
significantly contributed to the differences.
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Figure 4. As figure 1 but for Reynolds shear stress for air (a, b) Case C60a (m = 0.11 and
dp = 60 µm). (c, d) Case C90f (m = 1.1 and dp = 90 µm).

The profiles of the experimental and simulated Reynolds shear stresses are in
reasonable agreement for both cases (figure 4), at least when wall roughness is
included. This implies that in case C60a the measured solids shear correlation
coefficient was much lower than the simulated one, since in that case the measured
radial intensity was much higher than the simulated one. Apparently, the pipe
flow experiment with low mass load contained more radial particle fluctuation, but
compared to the simulations the extra fluctuation was mostly random.

Other features not included in the standard model will be considered in § 9.
However, none of them will appear to have such a large effect as wall roughness.
From the comparison with experiments we conclude that, provided wall roughness
is incorporated, there is reasonable agreement between simulations and reference
experiments with the exception of (1) the statistics at the first measuring point from
the wall, (2) the radial intensity of the solids in case C60a, and (3) the axial intensity
of the solids at the centreline in case C90f. As indicated above, the deviations near
the wall might be due to the pipe flow measurements being performed downstream
of the exit of the pipe. With respect to the solids intensities, we find a large amount
of scatter when centreline values from several experiments are compared with each
other, and the present simulation data are approximately within this range. It is



250 A. W. Vreman

uz—
U0

0.2

0.4

0.6

0.8

1.0

1.2

r/R0 r/R0

(a) (b)

vz—
U0

0.2

0.4

0.6

0.8

1.0

1.2

0.2 0.4 0.6 0.8 1.00 0.2 0.4 0.6 0.8 1.00

Figure 5. Mean velocities for (a) air and (b) solids m = 1.1 for dp = 60 µm (fine dots) and
dp = 90 µm (coarse dots); m = 30.4 (thin solid line) and unladen mean velocity (thick solid
line).

concluded that there is sufficient reason to assume that the computational model
describes the physics of the present particle-laden pipe flows reasonably well. In the
following sections the presentation and analysis of results is limited to smooth walls
(χ = 0), unless mentioned otherwise.

Next we discuss some more properties of mean profiles, and then focus attention
mainly on cross-sectionally averaged quantities, which are useful to depict trends. Note
that discrepancies between experimental and simulated cross-sectional averages may
be smaller than the absolute differences between the corresponding radial profiles,
because positive differences at some locations can cancel negative differences at other
locations, when a profile is averaged.

4. Mean flow statistics
In this section we consider the effect of the mass load parameter on the mean flow

statistics in more detail. Air and solids mean profiles for a high and a moderate mass
load, and for two particle diameters, are compared with the unladen profile in figure 5.
In all cases the centreline velocities are smaller in the unladen case. For the moderate
mass load, the profiles are flatter for 90 µm particles than for 60 µm particles. For
larger particles the Stokes response time is larger, and consequently, the particle slip
velocity at the wall is larger. The air boundary layer thickness is larger than the
unladen boundary layer thickness for the moderate mass load, but smaller for the
high mass load. As shown below, the thin boundary layer is not caused by an increase
of air turbulence, but by the drag force, whose influence on the air component is
proportional to α0 and therefore also proportional to m. Near the wall the air is
driven by fast moving particles. The terminal velocity of the particles in air, τpg,
equals 0.27 m s−1 and 0.62 m s−1, for 60 µm and 90 µm particles respectively. However,
near the wall much larger differences between particle and air velocity are observed.
The momentum of a particle near the wall comes from the centre of the pipe and
was either carried by the same particle or transferred by inter-particle friction.
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Figure 6. Steady state profiles of the particle volume fraction α for the simulations with
dp = 60 µm (solid) and dp = 90 µm (dotted). The simulation with the smallest mass load and
60 µm particles has been repeated with the wall-roughness model (symbols). From bottom to
top, solid curves represent cases C60a, b, c. e and f, respectively. Also from bottom to top,
dotted curves represent cases C90a, f, g and h, respectively.

Figure 6 shows the particle volume fraction α, for all the two-phase simulations
listed in table 1. Particles have accumulated near the wall, but only for low mass loads.
This phenomenon is called turbophoresis and is caused by the turbulent eddies. Since
the turbulence is strongly reduced for moderate and high mass loads, turbophoresis is
not observed in these cases. For the highest mass loads there is a significant maximum
of the particle concentration at the centre of the pipe, being twice as large as the
average value α0.

Note that the time averaging was performed during an interval in which the flows
were statistically stationary, implying that the mean solids concentration profiles were
steady. We found that the ṽr -profile was very close to zero. The mean deposition
velocity, whose definition is based on the solids mass flux (Young & Leeming 1997),
should indeed be zero in the statistically stationary state, since particles arriving at the
wall are not absorbed by it, but bounce back. Thus, problems arise if the deposition
in the present case is predicted by Reynolds-averaged theories that connect the
deposition velocity to the slope of the radial velocity fluctuation profiles at the wall;
the deposition velocity is zero, while the wall-normal derivative of both solids and
fluid radial velocity fluctuations is clearly positive at the wall (see figure 3a, b).

The particle concentration was not measured in the reference experimental works
by Caraman et al. (2003) and Borée & Caraman (2005), but there was no experimental
evidence of a non-uniform particle distribution. For one of the experimental cases,
m = 1.1 and dp = 90 µm, the simulation shows a uniform particle profile also. In the
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Figure 7. (a, b) bulk-velocity (circle) and centreline mean velocity (square) for air (a) and
solids (b). (c) uτ based on the air mean velocity profile and (d) skin friction coefficients of the
mixture cf (squares) and Cf (circles). Small symbols denote the simulations for dp = 60 µm
and large symbols denote the simulations for dp = 90 µm.

simulation of the other experimental case, m = 0.11, the solids concentration displays
a clear peak at the wall. This effect would be more pronounced if either the lift force
neglected here were included or the collisions were omitted (see § 9). However, the
peak is much lower if wall roughness is included (figure 6), which is another indication
that wall-roughness was important in the experiments.

Figure 7 shows centreline and bulk velocities, and skin-friction coefficients based
on bulk velocities as functions of the mass load ratio m. In each simulation the air
bulk velocity is the same (by definition). The centreline velocity increases for low mass
loads, reaches a peak at m = 0.4 and then decreases. The centreline solids velocities
are close to the corresponding air velocities for all mass loads. For low mass loads,
the solids bulk velocity is lower than the air bulk velocity, although the ṽz profile
is higher than the uz profile (see figure 1a). The solids bulk velocity is reduced by
turbophoresis; a high particle concentration near the wall means that the near-wall
region of low ṽz corresponds to a large weight factor in the bulk average. For m > 0.4
the solids bulk velocity is slightly higher than the air bulk velocity; turbophoresis does
not play a role any more, which will be shown below. The value of uτ based on the air
profile only is plotted in figure 7(c). It reaches a minimum at m = 0.4 and increases
for higher mass loads. Thus up to m = 0.4 the boundary layer becomes thicker,
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but beyond m = 0.4 it becomes thinner. There are two mechanisms controlling the
thickness of the boundary layer: the air turbulence and the air–solids drag force. If
the air turbulence reduces (which is the case as we will see below), the boundary layer
thickness increases and the mean profile becomes more round. If m increases, the
total drag force exerted by the particles on the air increases, which leads to a thinner
boundary layer. For moderate and high m, the latter mechanism is the strongest one,
which effectively leads to a thinner boundary layer.

The skin-friction coefficients of the mixture are based on the total force Fw exerted
by the flow on the wall of the pipe section, and either the bulk velocity of the mixture
(Ub), or the centreline velocity of the mixture (Uc):

c2
f =

Fw

ρmSU 2
b

and C2
f =

Fw

ρmSU 2
c

, (4.1)

where S is the surface of the pipe section and ρm = (1 − α0)ρg + α0ρs . The force Fw

is determined from the global force balance,

Fw = (α0ρsg + (1 − α0)(ρgg + aext )) vol(Ω), (4.2)

where vol(Ω) is the volume of the pipe section. The mixture mean profile is defined
by

U (r) =
ρg(1 − α)uz + ρsαṽz

ρg(1 − α) + ρsα
, (4.3)

such that Uc = U (0), and

Ub =
1

ρmR2
0

∫ R0

0

(ρg(1 − α)uz + ρsαṽz)r dr. (4.4)

Figure 7 shows that the skin-friction coefficients of all laden flows simulated here are
lower than those of the unladen flow.

5. Cross-sectionally averaged Reynolds stresses
To depict trends for the covered range of mass loads we now focus on cross-

sectionally averaged results. Cross-sectionally averaged quantities allow a compact
presentation of a large amount of data, and are suitable to analyse results, as we will
see in the following sections. We start with the presentation and discussion of the
Reynolds stresses of both phases.

The Reynolds stresses of all simulated flow cases are summarized in figure 8, which
is based on cross-sectional averages, for example

Rg
rr = 2R2

0

∫ R0

0

u′
ru

′
r r dr, (5.1)

and averaged streamwise, azimuthal and Reynolds shear stresses are defined in
the same way. Air properties are displayed on the left and solids properties on the
right. All intensities in this figure have been normalized with the unladen streamwise
intensity I

1/2
0 , whereas the integrated shear stresses have been normalized with

the unladen I0 = Rg
zz = 0.00912U 2

0 = 0.143 m2 s−2. The integrated solids streamwise
Reynolds stress is defined by

Rs
zz =

2

α0R
2
0

∫ R0

0

αṽ′′
z v

′′
z r dr, (5.2)

and analogous definitions are used for the radial, azimuthal and shear components.
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Figure 8. Air (a) and solids (b) intensities: R
1/2
zz (squares), R

1/2
rr (circles) and R

1/2
θθ (triangles), all

normalized with the unladen I
1/2
0 . The plusses in (a) denote experimental streamwise intensities

for air, taken from Kulick et al. (1994). Air (c) and solids (d) Reynolds shear stress Rrz/I0.
Small open symbols denote results for 60 µm particles, large open symbols denote results for
90 µm particles.

A striking result is that the air radial turbulence intensity strongly decreases and
is almost zero for m � 0.4. For the highest mass load it is still less than 20 %
of the unladen value. The reduction of the azimuthal air intensity is similar. As a
consequence of the reduction of the air radial stress component, the air Reynolds
shear stress reduces. Thus the production term in the streamwise Reynolds stress
equation reduces, such that, eventually, the air streamwise intensity stress reduces as
well. It is remarkable that the solids intensities and shear stress do not follow the
strong reduction of the air quantities. The solids streamwise intensity is larger than the
air component, but the radial intensity is smaller than the air component for low mass
loads. When m increases, the solids radial intensity increases, while for high m the
solids streamwise intensity has reduced. It appears that the solids intensities become
less anisotropic when m increases, which is caused by the increasing importance of
collisions, which redistribute the solids fluctuating energy from the streamwise to the
radial and azimuthal directions.

In figure 8(a) the streamwise air intensity dependence on m is compared with the
plane channel flow experimental data published by Kulick et al. (1994). Simulations
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and experimental results show similar relative reductions, despite the fact that the
simulations were performed for pipe flow at Reτ = 140, using 60 µm and 90 µm glass
beads, while the measured data were obtained for plane channel flow at Reτ ≈ 650,
using 70 µm copper particles with St ≈ 24 (based on mean time scale).

The results for the smallest size class of particles in the pipe flow experiments
performed by Tsuji et al. (1984) also confirm the reduction of turbulence intensities
with increasing mass load. For large particles the streamwise turbulence intensity
increased, but for the smallest particles used and a mass load of 1.3 the cross-
sectionally averaged streamwise intensity was reduced by a factor two, approximately.
The turbulence in the present simulations and in the experiments by Kulick et al.
showed larger reductions, because in these cases the particle diameters were smaller
than the Kolmogorov length scale. Even the smallest particle diameter used by Tsuji
et al. (200 µm) was several times larger than the Kolmogorov length scale. It is likely
that in that case the turbulence attenuation was weaker because the eddies in the
unladen turbulence were not replaced by laminar structures but by particle-induced
turbulent eddies with a length scale of approximately dp .

6. Analysis of turbulence attenuation
In § 6.1 we will show that the reduction of turbulent production is proportional to

the mass load and the solids Reynolds shear stress. Physical reasons for a significant
solids Reynolds shear stress will be discussed. In § 6.2 we will investigate reduced
versions of the drag force to pinpoint the basic mechanical processes that cause the
turbulence attenuation in inhomogeneous flows.

6.1. An equation for turbulent production

The reduction of the air shear stress directly implies a reduction of the air turbulent
production term. In this section we will further analyse the air turbulent production
term in its cross-sectionally averaged form:

P g = − 2

R2
0

∫ R0

0

u′
ru

′
z

du

dr
r dr, (6.1)

and we denote its unladen value by P
g

0 . Below, an equation for P g , valid for low
mass loads, will be derived, based on the following assumptions: (i) the mean air
profile remains unchanged for low m, and (ii) (friction of) particle collisions can be
neglected. Assumption (i) is justified from inspection of figures 1(a) to 4(a), which
shows that the relative change in the air mean profile is small compared to the
relative change in turbulence intensities and shear stress. The same conclusion can
be drawn from the measurements reported by Kulick et al. (1994). More specifically,
we mean by assumption (ii) that the momentum exchange between particles and wall
is neglected (which implies a zero solids Reynolds stress at the wall) and that the
rheological diffusion coefficient in front of the derivative of the mean particle velocity
is neglected. Assumption (ii) does not mean that collisions are entirely discarded, since
collisions influence the solids Reynolds shear stress (see § 9.7) and cause the particle
concentration to be more uniform. The latter two quantities occur in the equation
that will be derived for Pg . Assumption (ii) is reasonable provided the particle volume
fraction is sufficiently low. The lowest mass load simulation in the present work
corresponds to α0 ≈ 5 × 10−5.

We are now able to write the equations for the steady mean streamwise velocity of
both phases in an Eulerian framework, since owing to assumption (ii), the Eulerian
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equivalence of the Lagrangian formulation is straightforward:

ρg

r

∂

∂r
(r(uruz + u′

ru
′
z)) = ρgg + ρgaext +

1

1 − α0

f z + ν
ρg

r

∂

∂r

(
r
∂uz

∂r

)
, (6.2)

ρs

r

∂

∂r
(rα(ṽr ṽz + ṽ′′

r v
′′
z )) = αρgg − f z. (6.3)

In both equations we can omit the first term, since continuity implies zero ur and
zero ṽr in statistically stationary flow. Furthermore, we consider very small volume
fractions in this analysis, such that 1 − α0 can be replaced by 1 in the uz-equation.
Then we sum the two mean velocity equations and divide by ρg to obtain:

1

r

∂

∂r
(ru′

ru
′
z) = −m

r

∂

∂r
(rṽ′′

r v
′′
z ) − mb + (1 + m)g + aext +

ν

r

∂

∂r

(
r
∂uz

∂r

)
, (6.4)

where m = α0ρs/ρg is the mass load parameter, while the effects of non-uniform α

are represented by

b =
1

r

∂

∂r

(
α0 − α

α0

rṽ′′
r v

′′
z

)
, (6.5)

which vanishes for α = α0. Since the particle friction near walls is neglected due to
assumption (ii), the global force balance leads to a second equation,

(1 + m)gz + aext = 2
τw

ρgR0

= 2
u2

τ

R0

, (6.6)

where τw presents the wall shear stress.
An equation for the integrated air turbulent production is obtained after

multiplication of equation (6.4) with uz, substitution of (6.6) into the result, integration
over the cross-section and subsequent partial integration:

P g =
2m

R2
0

∫ R0

0

ṽ′′
r v

′′
z

∂uz

∂r
r dr − mB +

4u2
τ

R3
0

∫ R0

0

uzr dr − 2ν

R2
0

∫ R0

0

(
∂uz

∂r

)2

r dr, (6.7)

where

B =
2

R2
0

∫ R0

0

b r dr =
2

α0R
2
0

∫ R0

0

ṽ′′
r v

′′
z

∂α

∂r
r dr. (6.8)

The two last terms in equation (6.7) depend only on the mean air velocity profile.
Invoking assumption (i), and evaluating equation (6.7) for m = 0 we find that the
sum of these two terms is equal to the unladen production term, which we denote P

g

0 .
Then we arrive at the following equation for the relative turbulent production:

P g

P
g

0

= 1 − m

B − 2

R2
0

∫ R0

0

ṽ′′
r v

′′
z

∂uz

∂r
r dr

P
g

0

. (6.9)

We have thus derived that the air turbulent production should be lower than the
unladen production for low mass loads, since then ∂α/∂r � 0, such that B � 0, while

for all our simulations we found ṽ′′
r v

′′
z > 0. Arguments for a positive solids Reynolds

shear stress will follow later.
The derivation above is a sort of perturbation theory for the unladen flow perturbed

with a small amount of particles in such a way that assumptions (i) and (ii) hold.
Next we consider two more simplifications: (iii) the influence of the radial variation
of α is negligible, and (iv) the solids Reynolds shear stress is of the same order as the
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unladen air Reynolds shear stress. Simplification (iii) is reasonable since the strongest
variations of α occur near the wall, where the fluids Reynolds shear stress is small,
which implies that B is small. Simplification (iv) is supported by figure 8.

With the additional assumptions (iii) and (iv) the numerator on the right-hand side
of (6.9) is roughly equal to P

g

0 . A very simple expression for the turbulent production
results:

P g

P
g

0

≈ 1 − m. (6.10)

This means that the fraction of reduction of the turbulence production is roughly
equal to m. If the ratio of solids Reynolds shear stress and air Reynolds shear stress
is denoted by s a more accurate approximation for the right-hand side is 1 − sm.

The simulation statistics for the air turbulent production are shown in the following
section (see figure 10). The prediction 1 − m is represented by the dashed line in that
figure. For small m (0.11) the agreement with simulation results is reasonable. For
m = 0.23 the production is reduced more than this line indicates. For the latter mass
load figure 8(c, d) indicates that the slope s of the line should not be −1 but rather
−1.7, since for m = 0.23 the ratio between solids and air shear stress is about 1.7;
and the line 1 − 1.7m predicts approximately the simulated value for the air turbulent
production at m = 0.23. For m = 0.44 the air turbulence in the simulation has almost
disappeared. However, since 0.44 is not small compared to 1, we do not expect
quantitative agreement between theory and simulations for this or larger values of m.
Finally, we observe that for m = 0.11 the production for dp = 90 µm is slightly larger
than for dp = 60 µm, perhaps because turbophoresis is slightly stronger in the latter
simulation. According to the present analysis, a larger gradient of α leads to a larger
B and causes a lower P g .

Next we give two arguments for why a positive solids Reynolds shear stress is
expected in these types of flows. The first argument starts with the observation that
near the wall the particles move faster than the air, which is not unexpected, since the
particles are heavy and the vertical flow is downward. Consider a particle that moves
from the centre towards the wall, such that vr > 0. In the statistically stationary regime
we found ṽr = 0, consequently v′′

r > 0 at the location of this particle. On entering the
boundary layer the particle still carries the momentum it had in the centre. Therefore,
during its first moments in the boundary layer the streamwise particle velocity vz will
be higher than the average of the particle velocities in that plane. This implies v′′

z > 0
and, consequently, v′′

r v
′′
z > 0. Then the particle bounces at the wall; the second part of

the particle’s residence time in the boundary layer starts and v′′
r ≈ vr < 0. Since the

particle has now resided in the boundary layer for quite some time, the streamwise
velocity of the particle has dropped, primarily because of the drag force exerted by
the surrounding slowly moving air. Note that tangential friction of the collision with
the wall reduces the streamwise velocity of the particle further, but this effect is
assumed to be small because of assumption (ii). Thus, when the particle is moving
back from the wall to the centre, it has a relatively low streamwise velocity. Therefore
during the second half of the period that the particle resides in the boundary layer,
vz <ṽz, which implies v′′

z <0 and v′′
r v

′′
z >0. Thus, during the entire period of residence

of the particle in the boundary layer v′′
r v

′′
z >0. Assuming that the scenario just sketched

is representative of the mechanics of particles in the flow, it follows that the solids

Reynolds shear stress ṽ′′
r v

′′
z is positive, at least in the boundary layer. Owing to its large

shear, the boundary layer has a dominant effect on the first term in equation (6.7).
The second reason for a positive solids Reynolds shear stress is the air turbulence.

When the air flow is turbulent the air Reynolds shear stress is positive. To a certain
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extent this shear stress may be mimicked by the solids Reynolds shear stress when the
Stokes number of the particles, based on the Kolmogorov time scale, is sufficiently
small. For St �1 the particles respond to the smallest eddies in the turbulent flow. For
St >1 the particles are insensitive to the smallest turbulent eddies, but the air Reynolds
shear stress is tied to the turbulence production, and the cascade theory of turbulence
indicates that the larger eddies are responsible for the turbulence production. Thus
even for St > 1, the particles may react with the eddies responsible for the non-zero
air Reynolds shear stress. If the particle motion is sensitive to these eddies, the solids
Reynolds shear stress is (partially) caused by the air turbulence.

Both arguments show that the equation of turbulent production does not rule out
the fluctuational dissipation induced by particles. Although there is no such term
in the present equation for turbulent production, the mechanism can influence the
turbulent production through the solids Reynolds shear stress. An additional source
of solids turbulent shear stress is the inter-particle collisions, even at a mass load of
0.11 (see § 9).

6.2. Basic mechanisms

The purpose of this subsection is to demonstrate that there are at least two basic
mechanical causes for the turbulence attenuation in wall-bounded flows. The first is
related to inhomogeneity, the second occurs also when the turbulence is homogenous.
Both mechanisms contribute to the reduction of turbulence in pipe flows.

The first cause is that the solids mean velocity profile is more uniform than the air
mean velocity profile, which implies that the profile of the mean relative velocity is
non-uniform. There are three reasons why ṽz − ūz is non-uniform, or more specifically,
why ṽz − ūz attains high values in the boundary layer: (1) the Stokes response time
is larger than the time particles reside in the boundary layer; (2) the particles slip
at the wall, in contrast to air, which is subject to the no-slip condition; (3) inter-
particle collisions transfer momentum from particles in the core flow to particles
in the boundary layer. Because of the non-uniform mean relative velocity, there is
a wall-normal variation in the particle force. Note that the non-uniformity of the
particle force is related to a non-zero solids Reynolds shear stress (consider (6.3) for
constant α). In the following we will show that the non-uniformity of the particle
force reduces the amount of turbulence created by the Navier–Stokes equations
considerably.

The second cause is the classic reason for turbulence attenuation: the particle–fluid
interaction leads to an extra dissipation term in the turbulent kinetic energy equation
(see e.g. Hwang & Eaton (2005) for a recent review). We will see that even a small
of this term value, 8 % of the unladen value for the turbulent dissipation, can reduce
the turbulent production by 26 %.

To illustrate this we consider two simple forcing terms of the Navier–Stokes
equations, i.e. the particle-forcing term f in (2.2) is replaced either by

f 1 = −c(u − v0), (6.11)

or by

f 2 = −c(u − u), (6.12)

where v0 represents a uniform constant particle velocity profile with zero radial and
azimuthal components, and c = mρg/τp a constant drag coefficient. The ensemble-
averaged mean velocity u is also zero in the azimuthal and radial directions, while
its streamwise component is approximated by an average over the homogeneous
directions and over time, using a time integration that extends to the transient time t .
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Figure 9. (a) Mean streamwise velocity and (b) streamwise and radial (circles) turbulent
intensities: no forcing term (thick solid), forcing term f 1 (thin solid), forcing term f 2 (dashed),
and forcing term f 3 (dotted).

It is obvious that when f 1 is used, only the effects of the non-uniform mean relative
velocity are incorporated, while when f 2 is used, the particle force affects the turbulent
kinetic energy equation in particular. The first term does not modify the turbulent
kinetic energy equation, while the second one does not modify the mean momentum
equation when t has become large. It is also possible to combine both forces, to obtain

f 3 = f 1 + f 2 = −c(u − v0), (6.13)

which represents just a drag law for a flow with a fixed uniform array of particles
moving with velocity v0. These forcing terms are now used to illustrate the mechanics
of the turbulence reduction. They should be regarded as theoretical and not as
practical models for particle-laden turbulent flows.

Direct numerical simulations are performed to obtain solutions for the Navier–
Stokes equations including f 1, f 2 or f 3, in the present pipe configuration. The
chosen parameters are: v0 = 0.833U0 = 3.3m s−1, equal to the solids bulk velocity in
most of our simulations, m = 0.11, α0 = 5.4×10−4, and τp = 0.027 s, corresponding to
dp = 60 µm. The bulk velocity is kept constant in each case (2.98 m s−1), the pressure
gradient aext by which the flow is driven is a function of time only, and all forced
simulations are started from a fully developed unforced case.

Results of the three computations are shown in figure 9, and it appears that the
turbulence strongly reduces in each case (figure 9b). The largest reduction is found
when the two forces are combined. The values of the normalized cross-sectionally
averaged production P/P0 are 0.49, 0.74 and 0 for the forcing terms f 1, f 2, and f 3,
respectively. Note that the particle-dissipation term in the turbulent kinetic energy
equation will be smaller when the particles are allowed to move, because of a positive
correlation between u and v. Further, the turbulence will be reduced less if the mean
relative velocity difference is smaller, which is the case if the mean particle velocity
drops near the wall. Nevertheless, these simplified forcing terms give a clear illustration
of how turbulence attenuation is achieved. Thus we have shown that two distinct
mechanisms reduce the turbulence in wall-bounded flow: (1) the non-uniformity of
the mean relatively velocity, caused by slip at the wall, collisions, and large Stokes
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response time, and (2) the dissipation caused by particle forces in the turbulence
kinetic energy equation.

Finally, we discuss why the turbulence of the Navier–Stokes equations is so sensitive
to these particular forces. In the case of f 1 we can only say that the instability
mechanisms of wall-bounded turbulence are apparently reduced if a simple forcing
term, that increases when the wall is approached, is added to the equations. To
explore and understand this further, a linear stability analysis should be performed,
which is beyond the scope of the present paper. In the case of f 2 it is remarkable
that a relatively small value of fluctuational dissipation is able to produce such a
large turbulence attenuation. For this particular example, the fluctuational dissipation
term in the turbulent kinetic energy equation is only 8 % of the unladen turbulence
production, but the balance in the Reynolds stress equations can be significantly
disturbed by relatively small terms. Since in the case of f 2 the radial intensity
is reduced much more than the streamwise intensity, the particle dissipation term
disturbs the radial Reynolds stress balance equation more than the streamwise
Reynolds stress balance equation. In addition, the dissipation by a linear drag
force causes a damping that is equally strong for all wavenumbers, in contrast
to the standard viscous dissipation term, which leads to an increased damping for
large wavenumbers (proportional to the square of the wavenumber). This means
that even for small values of m, the large scales of the flow can easily experience
more dissipation from the particle forcing than from the standard viscous forces.
The nonlinear drag force might lead to some extra dissipation at large wavenumbers.
More dissipation at large wavenumbers occurs if a second-order derivative of u − v

is included in the drag law (Vreman 2007).

7. Reynolds stress budgets
The partial differential equations for the Reynolds stresses can help to understand

physical mechanisms in a flow. However, these equations have many terms, in
particular in two-phase flow where the number of terms is more than doubled,
compared to single-phase flow. Therefore, we apply the following simplifications:
only cross-sectionally averaged budgets are calculated and only for the equations
of the three diagonal Reynolds stresses. Owing to the cross-sectional integration,
all transport terms in the original equations vanish. In the following we specify the
mathematical form of the budgets first, and then show the values they attain for the
present simulations. The trends in the results for the air component turn out to be
similar to the trends in the air budgets calculated by Li et al. (2001) for plane channel
flow. The main new elements in the present section are that the trends of the budgets
are depicted for a large range of mass loads, and that solids Reynolds stress budgets
are also shown.

7.1. Fluid Reynolds stress budgets

The Reynolds stress equations for the air component are considered first. After
normalization with ρf (1−α0)πR2

0 we obtain the following equations for the air phase,
denoted by superscript g:

dRg
zz

dt
= P g

zz + Πg
zz − εg

zz + Zg
zz + A

g
ext , (7.1)

dRg
rr

dt
= Πg

rr − εg
rr + Zg

rr + Cg, (7.2)

dR
g
θθ

dt
= Π

g
θθ − ε

g
θθ + Z

g
θθ − Cg. (7.3)
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The integrated Reynolds stresses are denoted by R; the integrated budgets are P ,
Π , ε, and Z, representing turbulent production, pressure strain, turbulent dissipation,
and drag production/dissipation, respectively. There is also a formal term due to the
fluctuating external forcing, Aext , and a cylindrical distribution term, Cg (see Eggels
et al. 1994). These two terms appear to be small (Aext ≈ 0.0001εg

zz and Cg ≈ 0.01εg
rr ),

but formally they do not vanish after integration. There is a turbulent production term
in the zz-equation only; it vanishes in the other equations, because the other directions
are homogeneous, and because ur = 0 (due to the incompressibility condition).
Summation of (7.1)–(7.3) and dividing by 2 results in the cross-sectionally integrated
turbulent kinetic energy equation:

dkg

dt
= P g − εg + Zg + 1

2
A

g
ext . (7.4)

Dropping superscripts g, we define k = 1
2
(Rrr + Rθθ + Rzz), production P = 1

2
Pzz,

dissipation ε = 1
2
(εrr + εθθ + εzz) and Z = 1

2
(Zrr + Zθθ + Zzz). Note that for the

fluid phase the sum of pressure strains vanishes, as a result of the incompressibility
constraint. Time derivatives vanish if the flow is statistically stationary.

The complete definitions of the cross-sectionally averaged quantities are:

P g
zz = − 4

R2
0

∫ R0

0

u′
ru

′
z

du

dr
r dr, (7.5)

A
g
ext =

2

R2
0

∫ R0

0

u′
za

′
ext

du

dr
r dr, (7.6)

Cg =
2

R2
0

∫ R0

0

u′
ru

′
θ
2 dr. (7.7)

The other quantities have the same structure for each direction (replacing the subscript
r by z or θ):

Πg
rr = − 4

R2
0

∫ R0

0

u′
r (∇p)′

r r dr, (7.8)

εg
rr = − 4

R2
0

∫ R0

0

u′
r (∇2u)′

r r dr, (7.9)

Zg
rr =

4

ρg(1 − α0)R
2
0

∫ R0

0

u′
rf

′
r r dr. (7.10)

For any vector q with Cartesian components qx , qy and qz, the cylindrical
components are

(q)r = qr = qx cos θ + qy sin θ, (7.11)

(q)θ = qθ = −qx sin θ + qy cos θ. (7.12)

This transformation is used with q replaced by u, f , ∇p or ∇2u. The transformation
is required because the current Navier–Stokes solver is based on the Cartesian
coordinate system. There is no need to subtract the pressure and viscous
diffusion terms to obtain the pressure strain and the turbulent dissipation, since
the diffusion terms vanish after cross-sectional integration.

The effect of mass load on the air Reynolds stress budgets is displayed in figure 10.
The budgets have been normalized with the cross-sectionally averaged unladen
production term, P0 = 0.00268U 3

0 /D = 8.33m2 s−3. The turbulent production in
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Figure 10. Integrated budgets of the diagonal Reynolds stress equations for the air
component normalized with P0: (a) k-equation, (b) zz-equation, (c) rr-equation, and
(d) θθ -equation. Production P (squares), pressure strain Π (circles), dissipation ε (triangles)
and drag fluctuational exchange Z (diamonds). Small symbols correspond to simulations with
dp = 60 µm, large symbols to simulations with dp = 90 µm. The theoretical line 1 − m is the
dashed line in (a).

the turbulent kinetic energy equation (figure 10a) is strongly reduced with increased
mass load. The explanation of this reduction was discussed § 6.1. In fact the reduction
is even stronger than predicted from the theory (dashed line). The reason for this
discrepancy was also discussed in § 6.1.

Not only production, but also turbulent dissipation reduces strongly as m increases.
The figure also shows that the Z-term, which arises from the drag fluctuation, is small
for all mass loads. It is not always dissipative; for m > 0.44 it changes sign, and
although it remains small, it becomes more productive than P . For moderate and
high mass loads, therefore, the air fluctuations are not only small, but also mainly
caused by the particles and not by regular pipe flow turbulence.

The budgets for the three distinct components contributing to air turbulent kinetic
energy are shown in figure 10(b–d). The small value of Zg for all three components
seems to indicate that the additional dissipation of turbulent kinetic energy is not the
only reason for the strong turbulence reduction in pipe flow. However, we have to
be careful in drawing this conclusion, since in § 6.2 it was shown that the mechanism
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of particle-induced fluctuational dissipation can be responsible for a reduction of the
turbulent production by 26 %, even if the additional fluctuational dissipation is only
8 % of the unladen turbulent production. However, according to figure 10(a), the
turbulent production has reduced by 40 % for m = 0.23, where Zg is only 7 %. Thus,
Zg does not seem to be the only reason for the reduction of P g; the other mechanism
investigated in § 6 is also relevant.

The relative decrease of production, pressure strain and dissipation is shown in
figure 11 for the zz-equation. The difference with the previous figure is that here
each quantity has been normalized with its unladen value. The plot demonstrates
that the relative reduction of pressure strain is stronger than the relative reduction
of production and turbulent dissipation. Apparently, the (small) contribution of the
drag fluctuation is at the expense of the pressure strain term at low mass loads. Thus,
the air Reynolds stress tensor equations give more insight into the mechanism of
turbulence attenuation at low mass loads: the pressure strain reduces most. Since the
trace of this term is zero, a reduction of it in the zz-equation implies a reduction
of the source term in the equations for the radial (and azimuthal) fluctuations. As
a result, the air Reynolds shear stress and the turbulent production term reduce as
well. Such an argument resembles theories that explaine the turbulence reduction in
other flows. For example, the turbulence in a single-phase compressible mixing layer
is suppressed if the convective Mach number is increased. The turbulent growth-rate
reduction can be explained from the reduced pressure strain (Vreman et al. 1996).
In the compressible mixing layer, the pressure strain is reduced because pressure
fluctuations induced by eddies are relatively small in supersonic flows. An inspection
of some of the present pressure fields indicates that in the case of two-phase turbulence
reduced pressure strain and reduced pressure fluctuation are also connected.
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7.2. Solids Reynolds stress budgets

In this subsection we consider the solids Reynolds stress equations. They are similar
to the air Reynolds stress equations, but normalized with ρpα0, and denoted by
superscript s. For the solid phase the tensor Πs and −εs are both due to inter-particle
and particle–wall collisions. We therefore lump these terms together in a formal tensor
Qs . For conciseness, the cylindrical distribution term Cs is also lumped into the tensor
Qs , since it cancels in the sum Qs

rr +Qs
θθ . There is no term Aext for the solids equation,

since the fluid pressure gradients were neglected in the particle equation, because of
the large density ratio ρs/ρg . The solid Reynolds stress equations have the form:

dRs
zz

dt
= P s

zz + Qs
zz + Zs

zz, (7.13)

dRs
rr

dt
= P s

rr + Qs
rr + Zs

rr , (7.14)

dRs
θθ

dt
= P s

θθ + Qs
θθ + Zs

θθ , (7.15)

while the solids turbulent kinetic energy equation is:

dks

dt
= P s + Qs + Zs. (7.16)

Unless boldtype is used, the symbols denote half the trace of the tensor when the
subscripts are omitted. Thus, each term in (7.16) is half the sum of the corresponding
terms in the three diagonal equations. Note that −Qs represents the dissipation due
to collisions and Zs the dissipation due to drag fluctuations.

For the solid phase all three directions may theoretically have a non-zero production
term, unlike the gas phase. The compressible Reynolds stress equations in cylindrical
coordinates (see for example Freund, Lele & Moin 2000) give us the form of the
integrated production terms for the solids phase:

P s
zz = − 4

α0R
2
0

∫ R0

0

αṽ′′
r v

′′
z

dṽz

dr
r dr, (7.17)

P s
rr = − 4

α0R
2
0

∫ R0

0

αṽ′′
r v

′′
r

dṽr

dr
r dr, (7.18)

P s
θθ = − 4

α0R
2
0

∫ R0

0

αṽr ṽ
′′
θ v

′′
θ dr. (7.19)

Since the solids velocity is not divergence free, the mean radial velocity (ṽr ) is not zero
in general, but it should be zero for the present pipe flows, which follows from the
solids mass conservation equation, the applied boundary condition of zero mass flux
through the wall, and the fact that the profile of the mean volume fraction does not
depend on time. Therefore, the radial and azimuthal solids production terms vanish.

The expressions for Zs have the same form in each direction; the radial component
is explicitly specified:

Zs
rr =

4

ρsα0R
2
0

∫ R0

0

α ˜v′′
r (Fd)′′

r r dr. (7.20)

Qs , for which half the trace represents the collisional dissipation, is not further
specified, since the simulations used a discrete-particle model instead of an Eulerian
solids stress tensor model. Nevertheless, the values for the three diagonal components
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Figure 12. Integrated budgets of the diagonal Reynolds stress equations for the solids
component normalized with P0: (a) k-equation, (b) zz-equation, (c) rr-equation, and
(d) θθ -equation. Production P (squares), combined pressure strain dissipation term Q (triangles)
and drag fluctuational exchange Z (diamonds). Small symbols correspond to simulations with
dp = 60 µm, large symbols to simulations with dp = 90 µm.

of Qs can be calculated from equations (7.13)–(7.15). Note that the left-hand sides of
these equations are zero in the statistically stationary state.

The solids Reynolds stress budgets are displayed in figure 12. The production in
the solids k-equation decreases, but not for very low mass loads. A minimum is found
for m = 0.44, for which the air turbulence was almost entirely suppressed. Further
increase of the mass load returns the solids production to the low-load level, while for
very high mass loads the solids production decreases to approximately 25 % of the
low-load level. For low and moderate mass load the dissipation by the drag force is
large compared to the collisional dissipation, while both dissipations attain the same
level for the highest load. Unlike the Z-term for air, no change of sign is observed
for Zs; the drag force always dissipates solids fluctuational energy.

The budgets for the three distinct components contributing to ks are shown in
figure 12(b–d). Note that the solids pressure strain and collision dissipation have
been combined into a single tensor Qs . This tensor is not dissipative for each
diagonal component; it is observed to redistribute solids fluctuational energy from
the streamwise to radial and azimuthal components. The trends depicted for the
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Figure 13. Kinetic energy spectra (a) and particle concentration spectra (b) as functions of
streamwise wavenumber kz: unladen pipe case (solid thick curve) and the laden cases C60b
(thin solid), C90f (dashed) and C90h (dotted), corresponding to mass loads 0.23, 1.1, and 30,
respectively.

integrated budgets for the rr-component (figure 12c) and θθ-component (figure 12d)
are very similar, although a careful examination reveals that the latter budgets are
slightly larger than the former. The production terms for these two components are
negligible. For all mass loads, the radial and azimuthal solids fluctuations are produced
by collisions, since Qs

rr and Qs
θθ are always positive, balanced by the fluctuational

drag dissipations, Zs
rr and Zs

θθ respectively.
The results for the Reynolds stress budgets can be used to validate or calibrate

Reynolds-averaged two-fluid models. As an example we consider a common kinetic
model for the collisional dissipation term γ , which occurs in the equation of granular
temperature T (Lun et al. 1984; Nieuwland et al. 1995):

γ

ρsαP0

=
3

P0

(
1 − e2

r

) αT

1 − (α/0.65)1/3

(
4

dp

(
T

π

)1/2

− ∂ṽr

∂r

)
. (7.21)

The granular temperature is formally equivalent to 2
3
ks , so that we are now able to

evaluate (7.21) and to compare the outcome with −Qs . This comparison is performed
for a case with moderate and high m, C90f and C90h. The quantity in (7.21) is 0.007
and 0.03 for C90f and C90h respectively, while according to figure 12(a) both should
be around 0.1. Similar calculations for the other cases lead to the conclusion that the
kinetic model underpredicts the collisional dissipation for solids volume fractions up
to 1.5 %.

8. Spatial structures
In this section the spatial structure of the pipe flows is considered. Energy spectra

and snapshots of air velocities and particle locations are shown.
Figure 13(a) shows kinetic energy spectra for the air velocity. On increasing the

mass load, the strength of large vortices is clearly suppressed, while the energy in
the small scales increases. The computations with particles are not able to capture
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all the physical scales, since the boundary layers of the particles are not resolved.
The spectra clearly show that in these cases no clear physical scale separation exists
between the unresolved particle boundary layers and the scales that are resolved on
the grid. We verified that grid refinement just lengthens the spectra for non-zero mass
loads; in contrast to the unladen simulation, a resolvable maximum wavenumber
could not be identified for the laden simulations. If the explicit filter A mentioned in
§ 2 were applied, such a wavenumber would occur and correspond to the length scale
of that filter.

However, for low mass loads there is sufficient difference between the amplitudes
of the largest scales and the smallest resolved scales to have confidence that the
unresolved particle boundary layers do not affect the turbulent fluctuations. For the
higher mass load cases, there is less decay, but this is due primarily to the much
lower amplitudes of the large scales in the air turbulent fluctuations. In fact the air
fluctuations have become insignificant for higher mass loads. To verify this, the case
with m = 1.1 and dp = 90 µm has been repeated for two other grids. One grid was
coarser in all three directions and the other grid was one-dimensional and resolved
the mean flow only. In both cases particle statistics were not affected significantly (see
§ 9.1).

Figure 13(b) shows spectra of the fluctation of particle concentration in terms of
α, where α is the local instantaneous solids concentration, numerically obtained by
counting the number of particles in each cell. If there were regions with statistically
preferential concentration in the streamwise direction, it would be detectable in this
spectrum. In all cases this spectrum appeared to be almost horizontal; there is no
significant clustering of particles in the streamwise direction. Radial organization is
more significant; the highest mass load case has a relatively dense particle structure
in the centre of the pipe, shown in figure 14(b) (compare figure 6). Figure 14(c, d)
shows snapshots of the particle distribution for low mass load (m = 0.23) (with
strongly exaggerated particles sizes for visualization purposes). The relatively dense
layer near the wall shows a weakly discernible ordering in streamwise-orientated
streaky structures, similar to that observed in plane channel flow (e.g. Yamamoto
et al. 2001).

Finally, figure 15 contains snapshots of the streamwise and azimuthal air velocity
in a cross-section of the pipe. In the unladen case classic turbulent coherent wall-
turbulent structures are observed. The strength of these structures has clearly reduced
at m = 0.23, but there is no evidence for a different shape of these structures. For
moderate and high m the turbulent structures have disappeared; the mean flow is
discerned clearly, only perturbed by small fluctuations caused by the particle motion.
In these cases with strongly suppressed turbulence, the air flow is a non-parabolic
laminar pipe flow, perturbed with the modelled laminar boundary layer effects of the
moving particles.

9. Miscellaneous effects
In § 3 we found that the simulations with the standard model did not match the

experimental results, and also that the discrepancy became considerably smaller when
wall roughness was included. However, that does not necessarily prove that wall
roughness, and not another effect, caused the discrepancy. In this section we consider
therefore a number of additional variables and discuss how they modify the results
and relate to the physics in the gas–solid pipe flow. Although several interesting
conclusions can be drawn, it turns out that unlike wall roughness, none of these
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Figure 14. Snapshots of particles in several slices of the domain. Top pictures correspond to
high mass load case C90h. The planes shown are at r = 0.12 cm (a) and z = 2 cm (b). Bottom
pictures correspond to low mass load case C60b. The planes shown are at r = 0.97 cm (c) and
z = 10 cm (d). The size of the particles has been exaggerated for visualization purposes.

variables can explain the discrepancy. This means that wall roughness of the tube
in the experiments remains the most likely explanation, provided electrostatic effects
were not important in the experiments. The study of the other variables are described
in the following subsections, which treat numerical issues like grid resolution and
accuracy of interpolation, the role of domain size Lz and flow length scales, the
effects of bidispersed solids, the effects of collisions and collision parameters, lift
force, and the effect of inter-particle drag.

9.1. Resolution

Variations of the case with moderate m = 1.1 and dp = 90 µm are summarized in
table 2. The first two cases are simulated on the fine grid specified in § 2. Since the
air turbulence is very small in this case, a coarser resolution may be adequate. Two
coarser grids are used, G1 and G2. Both grids are coarsened with a factor 3/2 in
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Figure 15. Snapshots of uz (top) and uθ (bottom) for four cases, from left to right: unladen
(S0), m = 0.23 (S60b), m = 1.1 (S90f) and m = 30 (S90h). Contour increments are 0.5 (a–d),
0.1 (e, f ), and 0.02 (g, h). Negative contours are dashed. Cross-sections correspond to z = 0.05
for (a–c; e–g), while z = 0.02 was taken for m = 30 to correspond to the cross-section in
figure 14.

Description 2kg/I0 2ks/I0 Rs
zz/I0 P s/P0 ucen/U0 vcen/U0 u0.9R0

/U0 v0.9R0/U0

1 standard S90f 0.029 1.69 1.40 0.84 1.02 1.02 0.53 0.71
2 lift force 0.025 1.69 1.40 0.84 1.02 1.02 0.53 0.71
3 grid G1 0.002 1.66 1.38 0.86 1.02 1.02 0.55 0.71
4 grid G2 0.020 1.65 1.37 0.84 1.02 1.02 0.55 0.71
5 Lz = 10D 0.021 1.66 1.37 0.84 1.02 1.02 0.55 0.72
6 bidispersed 0.021 1.71 1.44 0.90 1.02 1.02 0.54 0.70
7 inter-particle drag 0.019 1.58 1.32 0.81 1.03 1.04 0.54 0.72
8 interpolation J1 0.019 1.66 1.38 0.85 1.02 1.02 0.55 0.71
9 µw = 0.5 0.019 1.80 1.47 0.94 1.01 1.00 0.56 0.71

10 µ = 0.3 0.019 1.65 1.40 0.86 1.03 1.03 0.55 0.71
11 er = 0.99 0.019 1.69 1.40 0.86 1.02 1.02 0.55 0.72
12 β0 = 0 0.019 1.67 1.39 0.85 1.02 1.02 0.55 0.71

Table 2. Overview of simulations for m = 1.1 and dp = 90 µm. Turbulent kinetic energies
have been normalized with the unladen value I0 = R

g
zz, the solids production term has been

normalized with the unladen production term P0, and the velocities have been normalized with
unladen centreline velocity U0, while the subscripts cen and 0.9R0 denote evaluation at r = 0
and at r = 0.9R0 respectively. Cases 4–12 have been performed on grid G2 (double grid for
case 5), and cases 8-12 have been performed with interpolation scheme J1.

the normal direction. Grid G2 uses the same ratio 3/2 for coarsening the streamwise
and azimuthal directions. However, grid G1 has no resolution at all in the latter
directions; it is a one-dimensional grid. For both grids, all the relevant properties
appear to deviate by less than 2 % from the fine-grid solution; mean flow quantities
of both phases and particle r.m.s. are not affected by the coarsening. The air turbulent
kinetic energy is affected, but this quantity is small for this mass load. According to
the spectra shown above, only few large scales contribute to it. The remaining scales
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are mainly caused by the particle motion. The smallest details of this motion cannot
be captured by the present approach, such that some sensitivity to grid resolution
remains, unless an explicit filter operator is introduced (see § 2).

9.2. Interpolation

The accuracy of the interpolation scheme between Lagrangian and Eulerian grid is
also investigated. For this purpose we repeat a low and a moderate mass load flow
simulation, C60a and C90f respectively, and replace the interpolation presented in § 2
by the (more advanced) linear interpolation scheme (labelled J1). Linear interpolation
is more complex on curved grids than on rectangular grids, one of the reasons why
this approach is not used throughout the present paper. It turns out that the effect
of modifying the interpolation scheme is not large. For C60a, the change in air and
particle intensities is around 1 %, the air turbulent production increases by 1.5 %, while
the solids turbulent production decreases by 3 %. The peak concentration of particles
near the wall increases by 2 %. For C90f, the solids intensities change by 0.3 %,
the solids turbulent production increases by 1 %, the streamwise air intensity, which
was already very small, becomes 5% smaller. In the latter case, the air percentages
turn out to be larger than the solids percentages, because of the almost negligible
amount of turbulence. It is concluded that the interpolation scheme presented in § 2 is
sufficiently accurate for the flows considered in this paper, which considers particles
with St � 20 based on the unladen Kolmogorov time; flows with smaller Stokes
number may be more sensitive to the interpolation scheme.

9.3. Domain size and flow length scales

The influence of the streamwise length of the domain Lz is discussed in this subsection.
Simulations C0 and C60a-d (listed in table 1) have been performed with a length
Lz = 10D, twice as large as in usual DNS of turbulent pipe flow; these five simulations
are repeated for Lz = 5D to investigate the influence of the domain size. In addition a
simulation with Lz = 10D is performed for C90f (number 5 in table 2). The effect of
Lz is found to be very small for C0 and C90f (deviations of around 2 %). The influence
of Lz appears to be larger for C60a-d; in these cases the doubled domain turns out to
be necessary. This is illustrated by figure 16(a), in which the non-normalized air and
solids production are compared for both domains. Results for the two domains are
quantitatively consistent for m = 0 and m = 1.1, while the trends are similar for the
mass loads in between. Figure 16(a) shows the solids production multiplied by mass
load, which gives a clear impression of the relative impact of the production terms
in the mixture. Around m = 0.3 both terms attain the same level, and around m = 1
the solids production term has almost risen to the level of the air production term in
unladen flow.

The required length of the domain is likely to be related to the streamwise length
scales of the flow. It appears that the streamwise energy spectra (figure 13) are too
compact to give relevant information about the dominant air length scale of the flow.
For this reason we compute two-point correlations of the air phase, for the unladen
flow, and for four representative laden flows. The curves, shown in figure 16(b),
correspond to the cross-sectionally integrated

R2(z) = u′
z(ξ + z)u′

z(ξ )/u′
z(ξ )u′

z(ξ ), (9.1)

where the average operator represents an average over streamwise direction ξ ,
azimuthal direction, and time. The increased width of the correlation function for
low mass loads indicates that the streamwise length scale of the turbulent motion
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Figure 16. (a) Air production term P g (solid lines) and solids production term ρpα0P
s/

(ρg(1 − α0)P0) ≈ mP s/P0 (dashed lines) for simulations with length 10D (circles) and 5D
(squares). (b) Two-point correlation function R2(z) for five simulations: unladen case (circles),
C60a (solid), C60b (dashed), C90f (dotted), C90h (thick solid).

Case m λ/D λSt ci [106/s] cw [106/s] λf /D λf,M/D

Unladen 0 0.8 – – – – –
C60a 0.11 1.4 3.2 0.20 0.14 13 27
C60b 0.23 4.0 3.5 0.48 0.14 10 13
C90f 1.10 0.35 10 0.89 0.43 5 4
C90h 30 0.15 10 215 12.3 0.5 0.14

Table 3. Normalized length scales and collision numbers for five representative simulations,
unladen, and the laden cases C60ab and C90fh.

has strongly increased. For the higher mass loads however, the length scale is smaller
than for the unladen flow, since there is no turbulence and the air fluctuations are just
the small-scale motions induced by the particles. If we base the characteristic length
λ upon the point where the correlation function has dropped to 0.2, we arrive at the
values for λ listed in table 3.

We can distinguish between various length scales that possibly play a role in the
motion of the solids. There are two small length scales: the most obvious is the
particle diameter dp , a measure of the thickness of the viscous boundary layer around
a particle; another is related to the solids volume fraction, λ0 = dp/α1/3. This length
scale is also small, since, assuming uniform volume fractions, λ0 equals 0.08D in the
most dilute case (C60a), and 0.02D in the most dense case (C90h).

There are also two large length scales related to particle fluctuating motion: the
mean free path length and the Stokes response path length λSt = Vzτp , in which Vz is
the solids bulk velocity. The mean free path length is the average path length between
two collisions, defined by

λf =
VzNpart

2ci + cw

, (9.2)
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where Npart is the number of particles in the domain, while ci and cw are the counted
inter-particle and particle–wall collisions per second, respectively. The number ci is
multiplied by two, since each inter-particle collision terminates the free path of two
particles. The mean free path length λf deviates significantly from the Maxwellian
mean free path (see table 3), probably because of the effects of anisotropy and walls.
Apparently, these effects are not covered by basic Maxwellian theory. The Maxwellian
mean free path is defined by λf,M = 2.83/(dp

2n), where n is the number concentration
of particles per unit volume.

It is evident that the three large length scales λ, λSt and λf are not equally important
for each mass load and Stokes number. The air turbulence dominates at the low end
of the mass load range, while at the other end we have the dominance of the rheology
of the solids (inter-particle and particle–wall collisions). Thus, for very low mass loads
the turbulence length scale is the most important, while for high mass loads the mean
free path is probably the essential length scale. The region of intermediate mass loads
is the most complicated one, since both fluid and particle length scales are important
and influence each other. For example, the large particle length scales are likely to
be a reason for the increase of the length scale of the turbulence in cases C60ab.
The results for the different domain sizes show that if the air flow is turbulent, the
turbulence length scale should be at least a few times smaller than the domain size
for reliable results. In contrast, to capture the particle mechanics, a streamwise length
of the same order as the relevant particle length scale seems to be sufficiently large.
This is supported by case C90f; no significant differences are found when the length
of the domain is increased from 5D to 10D (see figure 16a), although λf = 5D and
λSt = 10D in that case.

When λf < λSt , the most relevant particle length scale is probably λf , because on
average a particle collides before it has reached its terminal velocity. Hence, λf is more
important than λSt in cases C90fh. However, λf > λSt does not necessarily mean that
λf is irrelevant. Particles that have reached their terminal velocity can also collide, in
particular if the flow is turbulent. These arguments indicate that a domain size that
respects both the turbulence and collision length scales (λ and λf ) is a safe choice,
although this requirement might be too strict for very dilute flow.

9.4. Bidispersed solids

The reference experiment for m = 1.1 was for a bidispersed mixture. All simulations
in this paper correspond to a monodispersed solid phase, with the exception of case 6
in table 2, where a bidispersed solid phase is simulated: dp = 90 µm for two thirds of
the particles in the system (87 % of the solids volume fraction) and dp = 60 µm for the
other third. For both types of particles the particle density and the collision coefficients
specified in § 2 are used. Statistics are only calculated for the 90 µm particles in the
system. Compared to the monodispersed case 4, the solids mean velocity of case 6 is
not flatter and its solids radial intensity is not higher either. For these two quantities
it does not seem to be important whether the simulated solid phase is mono- or
bidispersed.

9.5. Lift force

The effect of the lift force is investigated by repeating the simulations for m = 0.11
and m = 1.1 after the inclusion of the standard lift force expression

1
2
ρgVp(u − v) × (∇ × u), (9.3)

in the force Fd,p . This force is not necessarily small near the wall, where the fluid
velocity gradient is large. The most noticeable change due to the lift force is an
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additional increase of the number of particles near the wall when m = 0.11. For
dp = 0.60 µm the peak particle concentration (0.0006) is two times larger than without
lift force; for the larger diameter dp = 0.90 µm the peak concentration (0.0003) is
1.5 times larger than without lift force. However, for m = 1.1 we do not find such
an increase, neither for dp = 60 µm nor for dp = 90 µ. It seems that the lift force
enhances the turbophoresis effect, since turbophoresis is active at the low mass load
only. Compared to the relatively large increase of particle concentration near the wall
for m = 0.11 and dp = 60 µm, only a modest change in turbulent quantities is observed.
The integrated air turbulent production, for example, becomes approximately 95 % of
the value without lift force. For m = 1.1, incorporation of the lift force does not lead
to significant changes, neither for air nor for solids statistics. For more information
on the role of lift force in wall-bounded turbulent flow, see Wang et al. (1997).

9.6. Inter-particle drag

The higher radial intensity in the experimental data could mean that the interaction
between particles is underestimated in the simulations. In practice, two particles can
be influenced by each other even if they do not collide. For example, just before a
collision the normal relative velocity of particles is modified by the relatively high
pressure in the (thin) region of air separating the particles. A shear layer between
two adjacent parallel moving particles will also influence their relative velocity, and
the particles do not have to touch each other at all. However, such effects were not
included in the computational approach presented in § 2.

We now formulate a model which does take into account ‘inter-particle drag’, the
fact that drag changes because of the presence of other particles in the domain.
For this purpose theoretical studies on the motion of two spheres in Stokes flow
have been consulted (Vasseur & Cox 1977; Legendre, Magnaudet & Mougin 2003;
Ardekani & Rangel 2006). In particular the latter work is useful, because it allows
the background flow to be time dependent, and because it can be extended to more
than two particles. The extension is simple if we restrict the reflection method to
first reflections only. Based on Ardekani & Rangel, the following corrected relative
velocity for each particle a is investigated:

va − ua +

N∑
b=1

(
c2
1

1 − c2
1

(va − ua)n − c1

1 − c2
1

(vb − ub)n +
c2
2

1 − c2
2

(va − ua)t

− c2

1 − c2
2

(vb − ub)t

)
. (9.4)

Here particle b is a neighbour of particle a and N is the number of neighbours the
model takes into account. The vector n is the unit vector along the distance vector y
pointing from a to b, while the components of the velocity diffences are

(v − u)n = ((v − u) · n)n, (v − u)t = v − u − (v − u)n, (9.5)

and the coefficients are

c1 = 3
4
ε + 1

2
ε3, c2 = 3

2
ε − ε3, ε =

dp

2| y| . (9.6)

The corrected relative velocity (9.4) is then substituted into the (nonlinear) drag law,
and so a model which includes effects of other particles in the drag force is available.

The model has been tested for several values of N (the N nearest neigbours were
taken into account). The model is time consuming for large N . In table 2 (case 7)
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results are shown for the case N = 1; the drag of each particle incorporates the
effects of its nearest neighbour. The results show a slightly larger relative mean
velocity, which indicates an increase of the settling velocity compared to the standard
drag law. A larger increase of the settling velocity is found when the model is applied
for larger N . The model is only an attempt to incorporate some of the physics of
the interactions between boundary layers around particles in discrete-particle models.
The conclusion is that incorporation of effects from the most influential neighbour
does not lead to a significantly larger radial fluctuation of the solids, and thus these
effects do not explain the observed discrepancy between experiments and simulations
without wall roughness.

9.7. Effects of collision parameters

The effect of increasing the wall friction coefficient (table 2, case 9) is also small. As in
the experiment, the mean solids velocity at the centre drops below the air velocity. As
a result the solids mean profile is slightly flatter, but not sufficient to close the gap with
the experimental data, which corresponded to vc = 0.95U0 and v0.9R0

= 0.83 m s−1.
Furthermore, the magnitude of the radial Reynolds stress, approximately ks − 1

2
Rs

zz,
is hardly influenced either. Cases 10–12 use a different coefficient for internal friction
(µ), for normal restitution (er ), or for tangential restitution coefficient (β0). The effects
are small, smaller than the effects of a modified wall friction coefficient (µw).

9.8. Effects of inter-particle collisions

The final investigation in this section is not performed to explain the differences
between simulations and experiments. Since the previous subsections demonstrated
that the effect of collision parameters is not large for low and moderate mass load,
questions may arise about the relevance of the inter-particle collisions themselves in
the present calculations. To answer such questions we repeat the run with the lowest
volume fraction, C60a, but without inter-particle collisions this time.

One effect of inter-particle collisions is the flattening of the particle concentration
profile. The additional run, C60a without inter-particle collisions, leads to a particle
concentration with a near-wall value which is at least five times higher than with
inter-particle collisions. Both simulations were terminated at the same time. The
convergence of the solids concentration profile slows down when inter-particle
collisions are omitted, and as a consequence the wall particle concentration was
still rising at the end of the simulation without inter-particle collisions. The same
interval for the time averaging has been used for both simulations, which means that,
in spatial terms, statistics with and without inter-particle collisions correspond to a
pipe section at the same spatial location. Mean velocity profiles and a logarithmic
plot of the solids volume fraction are shown in figure 17 for case C60a.

The turbulence production without collisions is larger than with collisions, 0.90P0,
compared to 0.83P0. This illustrates that inter-particle collisions contribute to the
turbulence attenuation and there may be several reasons for this. First, interparticle
collisions contribute to the solids Reynolds shear stress. Without these collisions the
solids ‘pressure strain’ Qs

rr and, consequently, the radial velocity fluctuations reduce,
and thus the solids Reynolds shear stress reduces. This implies that the turbulent
production is reduced less, because of the equation for turbulent production (6.7).
The second reason is related to the first: collisions lead to a flatter mean solids
velocity, such that the relative velocity becomes less uniform and turbulence is
suppressed (§ 6.2). Thirdly, inter-particle collisions reduce the turbophoresis effect
because particles can be bounced back into the core flow before they touch the wall.
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Figure 17. Solids mean streamwise velocity (a) and solids volume fraction (b) for case C60a
with inter-particle collisions (squares) and without inter-particle collisions (solid curves without
squares). The dotted line denotes the air mean velocity profile, which is not modified by
inter-particle collisions.

As a result the particle concentration in the core flow is larger than without inter-
particle collisions, and thus the turbulence attenuation, approximately proportional
to particle concentration, is stronger. A fourth reason could be that turbulence eddies
are disrupted and broken by particle collisions because of sudden changes in particle
paths. Although this suggestion is appealing, and we cannot entirely exclude it as a
possible cause, no evidence has been found yet. Instead § 6.2 showed that a strong
reduction of turbulence is very likely without sudden changes of the orientation or
local magnitude of the forces exerted by particles on the fluid.

10. Conclusions
In this paper vertical particle-laden pipe flow has been studied for an unladen

Reynolds number Reτ = 140, based on the radius of the pipe. The range of mass load
ratios simulated was large, varying from 0.11 to 30, corresponding to solids volume
fractions varying from 0.5 × 10−4 to 0.015. The Stokes number, solid/gas density
ratio, particle diameter, and turbulent Kolmogorov length scale were all in the range
in which it is commonly considered that the Euler Lagrangian approach is applicable.
Eulerian DNS of the air motion was performed, using point particle modelling of the
effects of the particles through a drag source term in the Navier–Stokes equations.
The motions of the particles was calculated by a Lagrangian approach, including all
the inter-particle and particle–wall collisions.

The results were compared with experimental results (Caraman et al. 2003; Borée &
Caraman 2005; Kulick et al. 1994). The first two references considered pipe flow at
the same Reynolds number, while the third reference quantified the attenuation
of turbulence, which occurs if the mass load is increased, for plane channel flow
at a higher Reynolds number. There was no quantitative agreement between the
present simulations and pipe flow experiments, when the standard four-way coupled
particle model was used. In particular the solids radial intensity was considerably
underpredicted by the simulations. However, when a wall-roughness model was
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incorporated better agreement with experiments was achieved. To show that wall
roughness is the most likely reason to explain the difference with experiments, several
variations of the particle model were considered, and their effect was much smaller
than the effect of the wall-roughness model. The variations included the incorporation
of a lift force, influence of neighbouring particles on the drag force, bidispersed instead
of monodispersed solids, and different parameters of the collision model. Once a rough
tube wall in the experiment was shown to be a likely and important cause for observed
differences between simulations and experiments, we proceeded to show results with
the standard model.

As in the channel flow experiments reported by Kulick et al. (1994), all air turbulence
intensities were found to reduce strongly with increased mass load ratio m. The
turbulence reduction was analysed by the derivation of an equation for the cross-
sectionally averaged turbulent air production term. This equation was derived from
a dissipation balance for the mean flow and expressed a first-order approximation of
1 − m for the ratio of air production relative to unladen production. Crucial aspects
of the analysis are the relatively low effect of solid collisional friction for low m

and the significant magnitude of the solids Reynolds shear stress. These issues are
closely related to the fact that particles experience slip and do not obey a no-slip
condition near the walls. The solids turbulent production term was found to be 1.5
times the unladen air production term for low and high mass loads, while it attained
a local minimum around m = 0.4. However, the air production term decreased to
zero rapidly, and monotonically with m.

The basic turbulence mechanisms were further investigated by numerical simulation
of the Navier–Stokes equations with several simple forcing terms. We found that
at least two mechanisms are responsible for turbulence attenuation in the present
pipe flow: (1) the non-uniformity of the relative velocity, and (2) the dissipation of
turbulent kinetic energy by the fluctuating drag force. Each mechanism was able to
reduce the turbulence, but the largest reduction was achieved when both mechanisms
were present in the flow. Non-uniformity of the relative velocity is connected to a
non-zero solids Reynolds shear stress, and is caused by the solids boundary condition
(which allows slip velocities), inter-particle collisions, and large Stokes response times.
The role of inter-particle collisions on the turbulence was separately addressed by
comparing simulations with and without inter-particle collisions.

Trends in mean quantities, intentities, Reynolds shear stresses, and the budgets
of the diagonal Reynolds stress equations were shown for all simulated mass loads,
and for both phases. Although turbulence reduced with increasing mass load, the
magnitude of the air fluctuating drag term remained quite small for pipe flow. Similar
findings have been reported for plane channel flow (Li et al. 2001; Paris & Eaton
2001). For higher mass loads the term changed sign, such that was not dissipative
any more. Compared to air production and dissipation terms, the air pressure strain
term reduced relatively fast, on increasing m. The pressure strain term represents the
turbulence communication between the streamwise direction on the one hand, and
the radial and azimuthal directions on the other hand. The communication is via the
pressure, and this communication process is apparently affected by the presence of
particles. The relatively strong reduction of pressure strain may cause the turbulence
reduction in the following way: reduced pressure strain leads to attenuated radial
and azimuthal intensities; then the Reynolds shear stress and turbulent production
term are reduced, such that finally the streamwise air intensity is also attenuated.
The Reynolds stress budgets not only give physical insight, but can also be used to
investigate two-fluid and rheological models. For example, for solids volume fractions
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up to 1.5 %, the collisional dissipation in the temperature equation was found to be
underestimated by the well-known model proposed by Lun et al. (1984).

The spatial distribution of particles was also investigated. Particles showed a
preference to be in the near-wall region for low mass loads, while for moderate
mass loads the radial distribution was more or less uniform, and for high mass loads
a tendency of particles to agglomerate at the centre of the pipe was observed. The
distribution in the homogenous directions was much more random, as in the plane
channel flow case (Fessler, Kulick & Eaton 1994). Nevertheless, a result was shown
which indicated that for the lower mass loads there was some weak organization in
the azimuthal direction near the wall (streakwise patterns).

Finally, the simulation of turbulence attenuation required a relatively large
streamwise extent of the domain. An investigation of two-point correlation functions
revealed a large increase of the streamwise length scale of the attenuated turbulence.
Also, characteristic length scales for the solids motion were considered. It was found
that the standard Maxwellian expression of the particle free path poorly estimates
the actual free path in these anisotropic inhomogeneous flows.

The author is grateful for stimulating discussions with N. G. Deen, J. G. M. Kuerten,
B. J. Geurts and J. A. M. Kuipers during their joint work on plane channel flow.
For the development of the software the author was kindly and officially permitted
to use his knowledge of the source code of the collision module written by Kuipers,
Hoomans, Link, Bokkers & Deen, Chemical Reaction Engineering Group, University
of Twente (see Hoomans et al. 1996; Hoomans 1999).
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