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An eddy-viscosity subgrid-scale model for turbulent shear flow:
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An eddy-viscosity model is proposed and applied in large-eddy simulation of turbulent shear flows
with quite satisfactory results. The model is essentially not more complicated than the Smagorinsky
model, but is constructed in such a way that its dissipation is relatively small in transitional and
near-wall regions. The model is expressed in first-order derivatives, does not involve explicit
filtering, averaging, or clipping procedures, and is rotationally invariant for isotropic filter widths.
Because of these highly desirable properties the model seems to be well suited for engineering
applications. In order to provide a foundation of the model, an algebraic framework for general
three-dimensional flows is introduced. Within this framework several types of flows are proven to
have zero energy transfer to subgrid scales. The eddy viscosity is zero in the same cases; the
theoretical subgrid dissipation and the eddy viscosity have the same algebraic structure. In addition,
the model is based on a fundamental realizability inequality for the theoretical subgrid dissipation.
Results are shown for a transitional and turbulent mixing layer at high Reynolds number and a
turbulent channel flow. In both cases the present model is found to be more accurate than the
Smagorinsky model and as good as the standard dynamic model. Unlike the Smagorinsky model,
the present model is able to adequately handle not only turbulent but also transitional fR04©
American Institute of Physic§DOI: 10.1063/1.1785131

. INTRODUCTION 7 = U, ~ UG 3)

The development of subgrid models for large-eddy simuas been replaced by the model
lation (LES) is an important area in turbulence reseaieke
the reviews in Refs. 1 and)2Eddy-viscosity models are = 206§ + 70313, (4)
popular, since Fhey are robust in practice and principally reWhereS-:l&iU-+la-Ui.
spect the dissipative character of turbulence. An accurate )27 2n . o .
The following eddy viscosity is proposed in the present

eddy viscosity for inhomogeneous turbulent flow should be- aper:
come small in laminar and transitional regions. This require-p per.

ment is unfortunately not satisfied by existing simple eddy- B
viscosity closures such as the well-known Smagorinsky ve=C —L (5)
model® Germancet al* solved this problem by the applica- ij i

tion of a dynamic procedure to the Smagorinsky model. Theyith

common implementation of the dynamic procedure incorpo-

rates explicit filtering operations, ensemble averaging in ho- o = 3T = auj 6)
mogeneous directions, and a somewadthoc clipping to
prevent an unstablgegative eddy viscosity. The extension
of these techniques to complex flows is not trivial, which is B = Azmamiamj, 7)
an important reason to continue the search for an eddy vis-

cosity that performs reasonably well without additional pro-

cedures. Bg=B11822~ Bia+ BriBas— Bia+ Baofaa— Boa (8
LES with an eddy-viscosity closure solves the filteredThe model constant is related to the Smagorinsky constant
Navier-Stokes equations, Cs by c=~2.5C% Like the Smagorinsky model, this model is

easy to compute in actual LES, since it does not need more
than the local filter width and the first-order derivatives of
the velocity field.
ot + 3(TG) = - a(p+ 1wd3) + vT; + 3(20eS;),  (2) The symbola represents th¢3x 3) matrix of deriva-
tives of the filtered velocityt. If a;«;; equals zeroy, is
using the summation convention for repeated indices. Theonsistently defined as zero. The tengois proportional to

unknown turbulent stress tensor the gradient mod&f in its general anisotropic forflt is

positive semidefinité which impliesBz=0. In fact,Bg is an
dElectronic mail: bert@vremanresearch.nl invariant of the matrixg, while a;;a;; is an invarianttrace
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of a'a. Therefore, mode(5) is invariant under a rotation of flow classes. Afterwards, the spherical top-hat filter will play
the coordinate axes, in case the filter width is the same imn important role to prove th& =0 does not hold in gen-
each directionA;=A implies 8=A%a"a). eral for other entire flow class&see the Appendix

In Sec. Il a theoretical foundation of mod@) will be In the following we thus derive thaD, vanishes for
provided using algebraic inequalities and classificationsgertain types of derivative matrices of unfiltered velocities,
which will demonstrate that the model and the theoreticaly; =d;u;. Consider a fixed locatior in ) and an open local
subgrid dissipation vanish for the same types of flow. In Secspace (), around x. Let I' be the space of all three-
[l the model will be applied to LES of a mixing layer and a dimensional kernel filter& which (1) are linear and normal-
channel flow. ized, (2) have a closed suppof}, inside (),, and(3) com-
mutate with spatial derivatives. A robust eddy viscosity
should not unnecessarily become zero, so we try to find the
flows that have zero subgrid dissipation without imposing

In this section it will be shown how modéb) emerges ~More restrictions on the filter.
from the investigation of algebraic properties of the theoret- ~ Using the linearity and normalization of the filter, the
ical subgrid dissipation. We will distinguish between 320turbulent stress tensor can be writtefi as
types of flows and algebraically classify these flows into ten
groups. The theoretical subgrid dissipation will be proven to
be zero for 13 laminar flow types. Next we will consider
flow functionals which are entirely expressed in first-order
velocity derivatives. In particular the functionB;, used in
the model(5), exactly vanishes for the 13 laminar flow types 11)
men_tioned ab_ove_. A_n upper t_)ound proport_ional for the_: thGWhereviX(y)zu(y)—Ui(x), which is unequal to the usual.
or_etlcgl_ subgnd_ _dlsspat_lon_ will also be derived and th|s_ r€-This reformulation immediately shows that=0 if u; or u; is
alizability condition will indicate howB, should be used in  ¢onstant o), It is remarked that constant on Q, implies
actual models. Other inequalities will be employed to esti-,oq dnu; on Q, and zerod, T in x.

mate the value of the model coefficient . To find local flow types withD.=0 in x, we start with
The theoretical subgrid dissipation is usually defined byyne constant velocity component, say. Consequently.

Il. THEORY

73 = WU 09 = TGOIT 09 = THO0T,09 + TG00

= L, GOy uy) = G0 J(uy(y) = T(x))dy = v},

D,=-mja; = - 7;S;, 9 7j,dU;, and 4U, are zero. Then the conditioir, a)=0 re-
) ) duces to
which can be rewritten as
OoUp + Toadols + Toadaly + Tagdsls = 0. 12
D.=—(r,@)=—(7,9), (10) To20Up T To30pU3z T Toz03Up T T3303U3 (12
where (. , .) is an inner product for the space (38X 3) This equation is satisfied if, for example,
matrices, similar tdi®. The inner product defines the norm FoUy = doliz = daly = dgUz = 0. (13

|A[>=(7, 7). In this way zero subgrid dissipation means that
is orthogonal tow and S.

In practice it is often desirable to adopt a nonuniform
filter, in order to allow a spatially variable filter width. It is 0 du, dyus
well known that for nonuniform filters the commutation be- =10 0 0 (14)
tween spatial derivatives and the filter is lost. Consequently, !
the dissipation from resolved to subgrid scales is not gov- 0 0 0
erned byD, only, but is also influenced by the so-called Q.
commutator errors. The commutator errors make a rigorous e only other possibilities to satisfy E¢L2) for an
mathematical treatment of the nonuniformly filtered equa-gntire class require zerdy,, 7,5 OF T35 TO achieve this, an

tions much more difficult, although it can be_ proven that,qgitional constant velocity component is necessary,usay
global conservation of mass and momentum is ensured fQfhich implies zeror,. Finally dsu; and consequently,l

self-adjoint nonuniform_filterg. In this paper we assume paye to be zero, and then EA2) is satisfied. The derivative
commutation between filter and spatial derivative. Thus Weyayix that is left over leads to a zero subgrid dissipation:
presently neglect the dissipation caused by the commutator

Only two derivatives are allowed to be nonzero; the theoret-
ical subgrid dissipation is zero if

errors and optimize the algebraic structure of the eddy vis- 0 0 dus
cosity by considerind, only. In the practical implementa- Xi=|0 0 dug (15)
tion of the model the filter does not explicitly occur, only the 00 0

filter width, which can easily be taken nonuniform. This does

not mean that the subgrid model and the implibasig filter ~ on €,. The matriceq14) and (15) represent simple locally
are independent, since the model replaces the exact turbuldaminar shear flows.

stress, whose distribution and magnitude depend strongly on The arguments can be repeated with a cyclic interchange
the order property and cutoff of the basic filterin this  of indices: 1—+2—3— 1. The total result consists of six ma-
section we will first derive that for arbitrary commutative trices with the following pairs of nonzero components:
filters the propertyD,=0 is satisfied in the case of at least 13 {d,U,, d1Us}; {doUq,doU3}; {d3uq, 05U} and  {dpuq,dsuq};
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TABLE I. The number of elements i@,(J), that is, the number of flow sented by Egqs(14) and(15). The other eleven matrices can

types withn zero derivatives and=0. A blank space means zero elements. be derived from these two types by cyclic interchange of

indices and/or setting one or two nonzero elements to zero.

J . : . . :
Pz % Qu X X% XU B XD A certain functionald might be a good candidate to in-

0 43 66 81 66 39 18 6 1 320 corporate into an eddy viscosity ifQ,(J)} is close to

D, 6 6 1 13 {Q,(D,)}. The first functional investigated #S|?, relevant
I 1 1 for the Smagorinsky eddy viscositf3A?l§ with |S?
Ag 1 1 =2|9%. The other functionals are based Sndefined by Eq.
Bs 6 6 1 13 (7):
Cs 6 30 48 36 18 6 1 145
Dy 3 14 15 6 1 39 Ag=2Kg=Bi =Npt A+ g, (18
B = B11822~ Bio+ B11B33~ Bra+ BaoBaz— Bos
{01Uy, d3u,}; {d1U3,doUs}. This includes the trivial solution = NN+ AMAg+ Aohg, (19
with nine zero velocity derivatives and the six possibilities of
the simplest shear flows, which have only one nonzero ve- Cp=detB=N s, (20)

locity derivatived;u; with i # j. The Appendix proves that the
types of derivative matrices witB =0 are restricted to the _ _
ones just mentioned, in case no additional limitations are Dp==(89=~5yS;- (21)

imposed on the filter. _ _The eigenvaluey; are the roots of the characteristic polyno-

_To formalize the approach above, an algebraic classifiyig| Like the eigenvalues, the coefficients of the polyno-
cation will be introduced that distinguishes between 320Qyq) Ag, Bg, andCy, are invariant under rotation. A8 is
types of flows, separated into ten classes. For a given numbggsitive semidefinite, each is a positive real number. Con-
n and flow functionald we define the set of flow types for gequently, Ag, Bg, and C, are always positive, unlike the
which the derivative matrix has zeros and=0. The corre-  gjissipation of the gradient mod8lj.
sponding sets of binary matrices are called the “flow alge- |, gne case the flow algebra is exactly the same as for
bra” of J. _ the theoretical subgrid dissipation; the s¢@,(Bs)} and

For this purpose we define an operator that transforms &, p )} are identicalsee the Appendix which means that
matrix field into a binary matrix: B andD, vanish for the same types of flow. Thus, for inho-

0 if ;=0 onQy mogeneous turbulence the algebraic theory strongly supports
(PXi =11 i, £00nQ (16)  an eddy viscosity based dB. The fact thaB, is positive
Xij X allows us to define positive eddy viscosities in a natural way;

A velocity field is not divergence-free if its derivative matrix ad hoc procedures to avoid negative diffusion are not re-
x has precisely one nonzero diagonal element. Therefore, wguired.
defineZ as the set of all binary matrices except those that The Smagorinsky eddy viscosity, proportional |i§|,
have precisely one nonzero diagonal elements. TheZset only vanishes in the trivial casg=0, like A;. Compared to
contains 2-3x 2°=320 matrices. In addition the cla® D, the flow algebras of; andD are too large. The matri-
denotes the set of all binary matrices4nwith n zero ele- ces
ments. The cas&=0 in Table | lists the number of elements

within each class. 0 g, O 0 du, O
For a given flow functional, for example, the subgrid 0 0 duzg|, |du; 0O doug (22
dissipation, we define gu; 0 0 0 du, O

J)= Z, (O uw(d Gel)(Pxy=¢0O J=0)y, . . .
QY {ge n (0 u( e D(Px=¢ )} are examples for whicB 4 is zero. Due to the relatively large
(17 size of the flow algebra, the dissipation of models based on
where is the unfiltered velocity derivative matrix. The set Cg and Dz might be insufficient. In additionD is not al-
Q,(J) represents all local flow types with zero velocity —Ways positive. Consequently, simulatithsvhich use an

derivatives and=0. We call the collectiodQ,(J)} theflow ~ €ddy-viscosity proportional t® suffer from numerical in-
algebraof J. stabilities, unless additional techniques are applied, such as

The flow algebra for the theoretical subgrid dissipationCliPPing or ensemble averaging in the dynamic model. The
D, has been derived above and the sizeQgD,) are sum-  Positiveness 0By is clearly an advantage.
marized in the second line of Table I. Table | also summa- 1O Propose an appropriate refationship betwegrand
rizes the flow algebras of five functionals that are entirelyBp: @ realizability argument fore is used. For positive fil-
based on the filtered velocity derivative matrix. An algebraict€'s; 7 IS positive semidefinité which implies
computer program was developed to obtain these results. The

= =
most important and relatively small flow algebra is listed in Il < A= 2, (23
the Appendix. This flow algebra consists of 13 matrices. 5 5
There are only two fundamentally different solutions, repre- 0= 3B, < A7=4k7, (24)
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0=<27C, <A’ (25)  this, we consider a velocity field which, after a rotation of
o o . ~_ coordinates, attains the form in Eq44) or (15). Thus for

The first inequality is proven with use of the realizability gome rotation matriyp, we havex=px,T=pu, anda=pap",
conditions for 7, for example, 73,=< 71175, The other in-  gych thatw has the form(14) or (15). Defining a diagonal

equalities can be proven by maximizing the functi@sA.  matrix £ with A2, A2, andA2 on the diagonal, the anisotropic

=N\3/\ =1 into Eqgs.(18) and(20).
A fundamental result for the theoretical subgrid dissipa-

— Tg =T T T
tion is obtained if the Schwarz inequality and inequal2g) B=ata=a'ta, £=ptp, (32)
are applied: -~ ) )
whereg; is in general a full matrix. Ifa is of the type(14),
D.=-(n9 =] lIS|= 2] (26 an explicit calculation of3=2a"¢éx gives
This means that the theoretical subgrid dissipation is
bounded by a term which is proportional to the subgrid ki- 0 0 0

netic energy. If the filter is replaced by the Reynolds averag- ~27 ~ o~
ing operator, the inequality expresses an upper bound for the alzfil alzaisfn ) (33
standard turbulent production. 0 Gnptabys  Batus

The modeled subgrid dissipationy2S?, ideally equals
D,. In that case, inequalit§26) results in the following real- while for @ of the type(15) we find that3 equals
izability condition:

- 00 0
ve<kJ 9™ (27)
o . . 00 0 : (34)
Compare Ref. 8, where a similar inequality was derived to o~ e~ o~
| iscosi 0 0 G2+ Gngtine b+ o) + Gk
estimatek for eddy-viscosity models. ¥13611 7 A13023\ 621 612/ T Ap3622
Condition(27) is satisfied by the following class of eddy ) .
viscosities: It can simply be verified that for both casBg=0 and thus
. the anisotropics, equals zero as well.
_ coki‘zq(;,BT)q _ CoK, _ Cok, 28 The parameteq in definition(28) controls the activity of
Ve [l = [l = IS (28) the model near walls and transitional regions, where it is less
. ) active for higherg. To quantify this, suppose that the flow is
with =0 andcy=<1, while we used of the type(14) or (15) plus a perturbation of small ampli-
Is| = %”a+ ol < %”a” + %”aT” = |- (29) tudea. Then it is easy to prove that~ ad. The eddy vis-

cosity is first order in the perturbation of a locally laminar
It is rremarked that for one-equation modélswith ve  shear flow in caseq:%. In addition, the eddy viscosity is
=cAvk, condition (27) implies v,=c?A?|g|, expressing exactly zero at a no-slip wall. At a wall the streamwise and
that v, should always be larger than some Smagorinskyspanwise derivatives, sayfu; and d;u;, are zero. As the in-
model. From the perspective of realizability, it would be compressibility constraint implies ze#gus,, the nonzero de-
more logical to definee=ck el ™%, that is, Eq.(28) for g  rivatives can only beu, or d,us. The velocity derivative

=0. matrix at the wall is equivalent to the tygé4), thusv,=0.

A family of practical models is obtained from definition Model (5) corresponds tm]:%:
(28) if k. andB, are replaced bk, andB:

—
cki-2ag4 _ VBg cll| 2 A2 A2

,,e:_ﬁ_éna” . (30) Ve c”a|| < 3 max{A2 A2 A2}, (35
The isotropic caséA;=A) reduces to The upper bound shows that there is no true singularity in the

YO =BAZALDTRY = qTa; T= 22, (31)  model;v, should be taken zero fde| =0. A simple estimate

for the model constant is obtained, if we assume that
This shows that the model is essentially built of the first twoapproximately equals its upper bound in the case of homo-
principal invariants of the positive semidefinite mattika. geneous isotropic turbulence. In addition, substitutilig

To prove that the isotropic case is rotation invariant, we=A and||al|=||S|, the Smagorinsky model is recovered for
introduce a rotation matrig and define the rotation of coor- c= 2.5C§. As Cs=0.17 is the theoretical valtigfor homoge-
dinates byx=px andl=pu. As p~1=p', the velocity deriva- neous isotropic turbulence, we filgt0.07. To obtain robust
tive matrix in the new coordinates reads-pap'. Conse- simulations in complex cases the practical valueGafis
quently a'a equals pa'ap’, which implies that the sometimes higher than the theoretical one. For exan@ye,
invariants ofa’« anda"a are the same. This rotation invari- =0.2 has frequently been used in literature, which corre-
ance implies that the isotropig equals zero for all rotations sponds tac=0.1 for the present model. Lower values@f
of the flow types in{Q,(Bg)}. have also been useds=0.1, for example, which corre-

Although not rotation invariant, thanisotropicv, does  sponds ta=0.025. Note that a larger model constarr C3
vanish for all rotations of flow types ifQ,(Bs)}. To prove is equivalent to a larges/h ratio.
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FIG. 1. Mixing layer results that demonstrate that unlike the Smagorinsky model, the dissipation of the present model is small in transitiGabtew;
kinetic energy/Tit;dx normalized bys (U, —U,)?5%, (b) subgrid dissipatiorf < 1/S?> dx, normalized byz(U,~U,)3, and(c) ratio (v;)/(A3S) in the center
plane. Present modébolid), dynamic Smagorinskydasheg, standard Smagorinskylotted, and 0-modeldash-dotted

Ill. APPLICATIONS do, Which denotes half the initial vorticity thickness, equals
The performance of the model emerging from the previ-l' The domain contains 8@niform cubic grid cells of size

ous theoretical results is now illustrated for two cases: atranézh:l' The Reynolds number Re10” is high, as in the

sitional and turbulent mixing layer at high Reynolds numberEXPeriment. Th? small value of the Kolmogo_rov Ier_1gth S(_:ale,
and a turbulent channel flow at Re360. It will be demon- about 0.001, indicates that direct numerical simulation
strated that mode(5) can successfully be applied in actual (DNS) of this flow remains impossible in the near future.

LES and is able to handle the complications caused by high e numerical method is the second-order finite volume
Reynolds number, transition, and walls. methodA described in Ref. 15, where it was found to be as

In this entire section the parameters in the model equafccurate as a fourth-order method in caseh. The bound-

g=3 andc=0.07. Second-order accurate incompressible an@"y conditions and implementation of the dynamic model are
compressible flow solvers are used in order to mimic the lowthe same as in Ref. 16. For very small values of the new
order of accuracy that is usually achieved in industrial codes¢ddy viscosity, machine precision errors inherent in floating
The present model will be compared with the SmagorinskyPoint operations may contaminate the calculationBgfin
modef and the dynamic eddy-viscosity model proposed bypractice. For this reason the simulations in this section used
Germanoet al? ve=0 if Bg< 108 This statement also numerically repro-
The first application is a LES of an experiment by Urbanduces the correct analytical limit fde — 0.
and Mungal** a weakly compressible mixing layer at high Figures 1-3 show that the present model performs better
Reynolds number. The simulations are temporal, the convedhan the standard Smagorinsky model and is as good as the
tive Mach number equals 0.25, and the initial mean velocitydynamic Smagorinsky model. The dynamic model is known
profile u;=tanh(x,) is perturbed with uniform noise of a to produce relatively accurate results in mixing layers at low
small amplitudeg(0.01), restricted to the center region of the Reynolds numbers, where comparison with DNS data is
shear layer. The velocity differendg; —U, equals 2, while feasible'® The computational effort needed for the entire
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FIG. 2. Mixing layer.(a) Momentum thickness normal-
ized by &, Present mode(solid), dynamic Smagorin-
sky (dashegl and standard Smagorinskgotted.
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FIG. 3. Mixing layer.(a) Streamwise an¢b) normal turbulent intensity in the center plagrrmalized byU;-U,); (c) Reynolds shear stress in the center

plane (normalized by(U;—-U,)?). Present mode{solid), dynamic Smagorinskydashegi standard Smagorinsk§dotted, and experiment by Urban and
Mungal (Ref. 14 (diamonds.
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simulation with the present model in the current compressare obtained with an incompressible code that uses a second-
ible code was only 50% of the cost of the dynamic simula-order accurate energy-conserving discretization of the con-
tion. Like the Smagorinky model, the present model is relavective terms. The viscous terms are treated with the discrete
tively cheap. seven-point Laplacian, while the discretization of the subgrid

For the Smagorinsky model the relatively low valdge  terms is according to Ref. 16. The collocated nonuniform
=0.1 is used to give this model a fair chance for turbulentgrid contains 4K 63X 47 cells in the domain 18X 2H
shear flow. Note that the Smagorinsky eddy viscosity forx 2H, usingA;=h;. The fifth grid point in the normal direc-
Cs=0.1 is approximately three times lower in transition thantion is at y"=11. The temporal discretization employs
for Cs=0.17. Despite this low value, the Smagorinsky modelAdams—Bashforth one for the convective and forward Euler
is much too dissipative in transition due to the presence ofor the viscous and subgrid terms. The initial condition con-
mean sheafFig. 1(a)]. As a consequence the physical insta-sists of the mean flow profiley/H)*" plus a sinusoidal per-
bility mechanisms are suppressed and the turbulence is dédrbation. Statistical averaging is performed fromH1Q,
layed. Considerably more dissipation and delay were obuntil 30H/u,. The flow is driven by a constant pressure gra-
served forCg=0.17, which in fact would be the correct value dient.
of Cgin the turbulent stage. Figures 4 and 5 show that the present model is also able

Unlike the Smagorinsky model, the present model is adto produce adequate results for wall-bounded shear flow.
equate in transition, where its dissipation is relatively smallTaking into account that the numerical method is only sec-
[Fig. 1(b)]. This is achieved without adopting a model con- ond order, there is reasonable agreement with the DNS data.
stant that is lower than its theoretical isotropic estimate. Thé he statistics from the DNS at Re360(Hu and Sandhafﬁ)
evolution of the total subgrid dissipation also shows that théhave been downloaded from www.afm.ses.soton.ae.ziki/
total subgrid dissipation increases more slowly than for thechanneldata. The documentatidshows that mean flow and
dynamic model. This indicates that the model is less flexiblgurbulent intensities collapse with those from the case Re
than the dynamic model, but a larger valuegoih Eq.(30) =395 published by Moseet al."® The Reynolds number of
will enlarge its flexibility and produce a sharper curve of thethe channel flow is sufficiently low to allow a LES without a
subgrid dissipation. subgrid model. Figures 4 and 5 include this simulation.

The mean level of the new eddy viscosity in the turbu-  Like the dynamic model but unlike the standard Smago-
lent regime is close to the mean level that a Smagorinskyinsky model, the present model shows an appropriate near-
eddy viscosity withCs=0.17 would produce. This is demon- wall behavior. The mean flow profiles for the present and
strated in Fig. {c), which contains the evolution of dynamic models are close to the DNS data, while the mean
(ve)/{A?9) in the center plane. Figure 2 shows the evolutionflow for the Smagorinsky model is much too Id#ig. 4(a)].
of the momentum thickness. It hardly grows during transitionFigure 4b) shows the three different eddy viscosities. Both
(until t=30), while a strong, approximately linear growth is the present eddy viscosity and dynamic eddy viscosity are
observed in the fully turbulent regime. reduced in the near-wall region, in contrast to the Smagorin-

For complex turbulent flows or high Reynolds numbers,sky eddy viscosity. The value of the present eddy viscosity is
LES without a subgrid modethe 0-model is often not suf- ~ zero at the wall, in agreement with the analytical prediction
ficiently robust, unless special numerical techniques are enfrom Sec. Il. Thus the near-wall behavior of the present
ployed that introduce artificial numerical dissipation. For themodel is appropriate, although there are differences with the
present mixing layer case the total kinetic energy of an LESlynamic model.
with the 0-model blew up after some time and the simulation ~ Figure 4c) estimates the turbulent dissipation for the
could not be completefFig. 1(a)]. large-eddy simulations. The turbulent dissipation can be

Figure 3 shows that the predictions by the present modebritten as a resolved plus an unresolved part. The resolved
reasonably agree with the experimental results. The centgrart is defined ag»|S'|?) where S denotesS;—(S;). The
line values of the streamwise and normal turbulent intensityunresolved part is the average of the dissipation term in the
and Reynolds shear stress have been plotted, because th&sequation. Assuming that the production and dissipation of
values can simply be compared with the experimental resultsubgrid scales are in equilibrium, we can estimate the unre-
found in Ref. 14. The unresolved parts of the Reynoldssolved turbulent dissipation by (7;S;). This leads to
stresses have not been included, which would marginally im¢v,|S2), known as the subgrid dissipation, that is, the dissi-
prove the predictions. The standard estimate of the unrepation from resolved towards subgrid scales. According to
solved part of the Reynolds shear stress is given byFig. 4(c), the turbulent dissipations for the present and dy-
(-vS1»),*" which was never more than 2%. In contrast to thenamic models are not far from the DNS data and better than
Reynolds stresses, the turbulent dissipation is almost entirelpr the 0-model. In the case of the present model and dy-
in the subgrid scales; the resolved dissipation equals legsamic model, the subgrid dissipation is about 40% and 30%
than 0.1% of the subgrid dissipation in the turbulent regimeof the total turbulent dissipation, respectively.

In addition, simulations of the mixing layer flow have Table II summarizes the skin-friction coefficients, ob-
been performed using=0.1, instead of 0.07, and/or another tained from the mean velocity profiles. The present model
initial perturbation. The conclusions regarding the perfor-predicts both coefficients within 2% error of the DNS values.
mance of the models remain the same. The dynamic model is also good, much better than the

Figures 4 and 5 contain an example of implementatiorD-model, which shows errors of about 10%. The Smagorin-
for turbulent plane channel flow with Re360. These results sky model is completely out of range. The nonzero contribu-
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FIG. 4. Channel flowfa) Mean streamwise velocitinormalized byu,), (b) subgrid eddy viscosityv,) (normalized byu,H), and(c) turbulent dissipation and

subgrid dissipatioinormalized bwf/H). DNS (Ref. 18 (circles, present mode(solid), dynamic Smagorinskgdasheg, standard Smagorinskgotted, and
0-model(triangle$. The subgrid dissipatiofirS?) is shown for the present modgluses and for the dynamic modétrosses

tion of the Smagorinsky model to the wall shear stress has afolds stresses is to add a fraction(gf;) (compare Ref. 16

course been included. which in case of the present model would not involve extra
The left-hand side of Fig. 5 compares resolved turbulentalculations.
intensities and shear stress with thilteredDNS data. This The right-hand side of Fig. 5 contains the “corrected”

approach is usually followed in literature. A better agreementurbulent intensities and corrected Reynolds shear stress, ob-
would be obtained if the resolved quantities were comparedained after adding up the resolved and unresolved parts of
with filtered DNS data. However, there is a third approach,the Reynolds stresses usikg=2v,S. In fact all profiles
namely, to compare unfiltered DNS or experimental datebenefit from these corrections. In particular, the peak values
with the sum of the resolved and unresolved part of the Reyof the normal and spanwise profiles significantly increase,
nolds stress tensor. while the Reynolds shear stress for both the present and dy-
The unresolved part of the Reynolds stress tensor can hgamic models also considerably improves. Figur@l)5
approximated by(7;) (see, e.g., Ref. 16, pp. 382-383, andclearly illustrates that the Smagorinsky model considerably
Ref. 19, which becomeé—ZVESj +§k,5ij> for eddy-viscosity  contributes to the wall-shear stress in contrast to the dynamic
models. A problem is that the unknown trace of the turbulentand the present models. The 0-model somewhat overpredicts
stress tensor has been lumped into the pressure. However, tthee turbulent shear stress.
realizability inequality(27) offers the modek,=c, v¢|§| with Figure 5 thus demonstrates that the present model pre-
c,=1. Takingc,=2v2, we havek,=2v,9, which according dictions of the turbulent intensities and Reynolds shear stress
to Ref. 8 is a good approximation in case of the Smagorinskyre satisfactory and in fact quite similar to the dynamic case.
model in a turbulent mixing layer. It is remarked that thelt is remarkable that the Smagorinsky model without wall
estimate ok can also be used to deripefrom the modified damping also gives rise to acceptable second-order statistics.
pressureﬁ+§k. Another option to correct the resolved Rey- The poor near-wall behavior of this model apparently affects
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FIG. 5. Channel flow. Resolve@) and correctedb) turbulent intensitiegnormalized byu,). Streamwise intensitghighest set of curvgsspanwise intensity
(middle se}, and normal intensitylowest set Resolvedc) and correctedd) Reynolds shear stregsormalized byuf). DNS (Ref. 18 (circles, present model
(solid), dynamic Smagorinskydasheg, standard Smagorinskylotted, and 0-modeltriangles. Top curves in(d) show the correctioné-v,S;,).

the mean flow much more than the Reynolds stresses. Naion of the unresolved contributions, the second-order statis-
only the Smagorinsky but the 0-model also produces acceptics of the present and dynamic models significantly improve
able second-order statistics. According to the left-hand sidand are not worse than those of the 0-model.

of Fig. 5, the 0-model seems the best. However, after inclu-

Summarizing Figs. 4 and 5 and Table Il, we have found

TABLE II. Channel flow. Skin-friction coefficients; and C;, based on center line and bulk velocity, respec-
tively, and computed Reynolds number. The percentages denote the relative deviation from the DNS results. In
all casesr, was calculated usiné(u|+u,)/d, whereu, andu, are mean velocities at the first grid point off the
left/right wall andd the distance to the nearest wall. The bulk velocity in each case was calculated with the

trapezoidal rule.

Computed Re Ct Cs
DNS* 364 0.005 06 0.006 67
Present model 361 0.005®41.6 %) 0.006 57-1.5%)
Dynamic model 359 0.005 020.8%) 0.006 36—-4.6%)
Smagorinsky model 365 0.007 341 %) 0.009 51+43%)
0-model 363 0.0056411%) 0.007 24+8.5%)

*Reference 18.
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that the best all-round predictions for channel flow are givertive form of the eddy viscosity in the so-called one-equation
by the present and dynamic models. On the whole thesmodels. In case of the Reynolds averaging operator, the in-
models outperform the 0-model and are much better than thequality expresses an upper bound of the turbulent produc-
Smagorinsky mode(without wall damping. It is stressed tion in terms of the turbulent kinetic energy.

once more that LES with the 0-model is in general not ro-  Although essentially not more complicated than the stan-
bust, which was shown by the mixing layer case in this secdard Smagorinsky model, the present model was found to be
tion. Nevertheless, for low Reynolds numbers and low ordemuch more accurate in LES of inhomogeneous turbulence.
methods the 0-model is sometimes able to produce reasoithe model was tested in two different flows, a turbulent
able statistics, which is shown in Fig. 5. However, in a LESchannel flow and a transitional and turbulent mixing layer at
that uses the 0-modélvithout a tuned numerical upwind high Reynolds number. In fact, it was observed to be ap-
schemg the amount of small scales in the resolved field isproximately as accurate as the dynamic Smagorinsky model.
usually too large. In this way the molecular dissipation iSA reasonable agreement with DNS d&tdhannel flowy and
able to take over the role of the subgrid dissipafi%.ue to experimental data(mixing layen was observed, using
the excessive amount of small scales, results obtained witbecond-order numerical methods. It is concluded that the
the 0-model will be considerably more sensitive to the nu-model shows an appropriate transitional and near-wall be-
merical discretization than results obtained with eddy-havior and remains robust in high Reynolds number applica-
viscosity models. tions.

The isotropic form of the present model, which corre- The present model is a base model and it can obviously
sponds taA;=A in Eg. (5), can also be applied to turbulent be used in conjunction with existing models in a so-called
channel flow. For this purpose the standard expresdion mixed framework. Further improvement of modB} is pos-
=(h;h,h3)¥® can be used. In that case the isotropic filtersibly achieved if the dynamic procedfirer the adjoint fil-
width in the near-wall region will be quite large in terms of tering techniqu@is applied. The latter technique leads to the
h,. If this is undesirableA can be taken equal to the mini- model +%2vFS;), which includes backscatter. However,
mum of (h;h,h)Y® and the distance to the nearest wall, the main result of this paper is that a simple eddy-viscosity
which ensures that the support of the implicit isotropic top-model exists which does not need such techniques to provide
hat filter remains inside the flow domain. acceptable results for two inhomogeneous flows using a

We have thus shown that the model produces satisfacsingle value of the model constant. The eddy viscosity has
tory results for two different flow cases, using a single valuethe intrinsic ability to adapt to the local level of turbulent
of the model constant, which was equal to its theoreticahctivity, while it does not need more than the local filter
estimate in isotropic turbulence. Apparently, the presentvidth and the first-order derivatives of the velocity field.
model is much more able to adapt to different flow typesBecause of these properties, applications of the model in
than the Smagorinsky model. LES of more complex flows seem promising.

In the previous two test cases the present model was
f_ound to perform as good as the dynamic model. In t_he ParA cKNOWLEDGMENTS
ticular case of plane channel flow better results might be
achieved if the approximate deconvolution mo@&DM )™ The author is grateful to Dr. J. G. M. Kuerten for his
is used. However, ADM is much more complicated than thecomments on the manuscript and to the University of Twente
model proposed in the present paper; it involves filter inverfor giving the author access to their facilities.
sion by explicit filtering operations and a dynamic relaxation
term. In addition, we recall that the accuracyaoposteriori .

LES is not only connected to the model but also to theAPPENDIX' FLOW ALGEBRA

numerics:’ The excellent ADM results were obtained witha ~ The complete flow algebréQ,(B)}={Q,(D,)} is listed

spectral method, which is inapplicable in complex geom-pgjow:

etries. Model(5) is very easy to implement and this paper

quantifies that it leads to satisfactory results, even for lo

order schemes. Thus, the present model seems well suited

engineering applications.
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As Bg is only expressed in first-order derivatives, an alge-velocity field and a filter exist such tha&, # 0. For u2=xf
braic computer program could evaluate for each of the 32@&nd u3=x§, Eqgs.(A2) and (A6) imply

flow types whetheB; vanished or not. The binary matrices

corresponding to the derivative matrices for whig=0 are
exactly those listed above.

Next it is proven that the flow algebra B, is not larger
than these 13 matrices. According to definit{@), a binary
matrix ¢ is not in the flow algebra oD, if a filter and a
velocity field u; corresponding t@ exist such thaD,# 0.

4x,R*
350

D E((?%U:; ﬂ%UZ) (9203 = # 0.

= A8

= 350 (A8)

In a similar way it can be proven that the last two cases in
expression(A6) do not belong tdQ,(D,)}. [It is easily veri-
fied thatB, also equals zero for the first two cases in Eq.

We first consider the velocity derivative matrices with (A2) and nonzero for the last three ca$es.

precisely two nonzero elements, s&yu;,du}. If one of
these elements is a diagonal element, the definitidn aind
the first term in the Taylor expansion

2

A
T = _kakui du; + o(a%)

12 (A1)

Suppose a given matrikwith preciselyn nonzeros is in
the flow algebra oD.. As a consequence, the flow algebra
also contains each matrix derived frafrby replacing non-
zero components of with zero. This argument and the re-
sults for matrices with two nonzero elements do not allow
that n=3. This completes the proof thdQ,(D,)} is not

imply that in generaD_.# 0. If both nonzero elements are on larger than the set of 13 matrices.

the diagonal, the incompressibility constraint may cause zero

D,, but only if A,.=A,. Anisotropic filters withA,# A, pro-

Of course one could restrict the local filter spdtand
only allow separabl€filters, which can be written as a prod-

duce D,#0. We conclude that matrices with at least oneUct of three one-dimensional filters. If only separable filters

nonzero diagonal element are not{i@,(D,)}.

are allowed{Q"(D,)} is much larger. In that case it is equal

In order to verify the nonzero pairs that do not contain at® {Q"(Dg)}, the flow algebra of the dissipation of the gradi-

diagonal element, a spherical top-hat filter with radifuand

ent modelD ;. This means that for separable filters the theo-

filter volume V is employed. The Taylor expansion of the retical subgrid dissipation also vanishes for the matrices in

filtered velocity becomes

_ R, R ,, s
U =u+ E)(?mui + ﬁ)&ﬁ(ﬂ u; + O(R ), (AZ)
because the expressions

1 3 ,. R

P dv=—, A3
214772 ), % " 10 (A3)
1 3 i, R

a—msfvxldv-@ (A9
1(4) 3 - R*

— dv=— A5
41 (2 ) 47TR3J T, (A5)

are the coefficients in front offu;, dju;, and &asu;, respec-
tively. Substitution of Eq(A2) into the turbulent stress ten-
sor gives

R* R
7y = 5 ImUi Il ﬁ)&ﬁui duj+ %(&Iaﬁui N;

+ gy; (7|(?§Uj + Y, (?k(?|ul') + O(RG) . (AG)

Eqg. (22). However, the most natural three-dimensional filter

with a finite support is a uniform average over a sphéne

nonseparable spherical top-hat fijtéFhe restriction ofl” to
separable filters is apparently not the most logical choice.
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