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An eddy-viscosity model is proposed and applied in large-eddy simulation of turbulent shear flows
with quite satisfactory results. The model is essentially not more complicated than the Smagorinsky
model, but is constructed in such a way that its dissipation is relatively small in transitional and
near-wall regions. The model is expressed in first-order derivatives, does not involve explicit
filtering, averaging, or clipping procedures, and is rotationally invariant for isotropic filter widths.
Because of these highly desirable properties the model seems to be well suited for engineering
applications. In order to provide a foundation of the model, an algebraic framework for general
three-dimensional flows is introduced. Within this framework several types of flows are proven to
have zero energy transfer to subgrid scales. The eddy viscosity is zero in the same cases; the
theoretical subgrid dissipation and the eddy viscosity have the same algebraic structure. In addition,
the model is based on a fundamental realizability inequality for the theoretical subgrid dissipation.
Results are shown for a transitional and turbulent mixing layer at high Reynolds number and a
turbulent channel flow. In both cases the present model is found to be more accurate than the
Smagorinsky model and as good as the standard dynamic model. Unlike the Smagorinsky model,
the present model is able to adequately handle not only turbulent but also transitional flow. ©2004
American Institute of Physics. [DOI: 10.1063/1.1785131]

I. INTRODUCTION

The development of subgrid models for large-eddy simu-
lation (LES) is an important area in turbulence research(see
the reviews in Refs. 1 and 2). Eddy-viscosity models are
popular, since they are robust in practice and principally re-
spect the dissipative character of turbulence. An accurate
eddy viscosity for inhomogeneous turbulent flow should be-
come small in laminar and transitional regions. This require-
ment is unfortunately not satisfied by existing simple eddy-
viscosity closures such as the well-known Smagorinsky
model.3 Germanoet al.4 solved this problem by the applica-
tion of a dynamic procedure to the Smagorinsky model. The
common implementation of the dynamic procedure incorpo-
rates explicit filtering operations, ensemble averaging in ho-
mogeneous directions, and a somewhatad hoc clipping to
prevent an unstable(negative) eddy viscosity. The extension
of these techniques to complex flows is not trivial, which is
an important reason to continue the search for an eddy vis-
cosity that performs reasonably well without additional pro-
cedures.

LES with an eddy-viscosity closure solves the filtered
Navier–Stokes equations,

] juj = 0, s1d

]tui + ] jsuiujd = − ]isp + tkk/3d + n] j
2ui + ] js2neSijd , s2d

using the summation convention for repeated indices. The
unknown turbulent stress tensor

ti j = uiuj − uiuj s3d

has been replaced by the model

− 2neSij + tkkdi j /3, s4d

whereSij =
1
2]iuj +

1
2] jui.

The following eddy viscosity is proposed in the present
paper:

ne = cÎ Bb

ai jai j
, s5d

with

ai j = ]iuj =
] uj

] xi
, s6d

bi j = Dm
2 amiamj, s7d

Bb = b11b22 − b12
2 + b11b33 − b13

2 + b22b33 − b23
2 . s8d

The model constantc is related to the Smagorinsky constant
CS by c<2.5CS

2. Like the Smagorinsky model, this model is
easy to compute in actual LES, since it does not need more
than the local filter width and the first-order derivatives of
the velocity field.

The symbola represents thes333d matrix of deriva-
tives of the filtered velocityu. If ai jai j equals zero,ne is
consistently defined as zero. The tensorb is proportional to
the gradient model5,6 in its general anisotropic form.7 It is
positive semidefinite,8 which impliesBbù0. In fact,Bb is an
invariant of the matrixb, while ai jai j is an invariant(trace)a)Electronic mail: bert@vremanresearch.nl
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of aTa. Therefore, model(5) is invariant under a rotation of
the coordinate axes, in case the filter width is the same in
each direction(Di =D implies b=D2aTa).

In Sec. II a theoretical foundation of model(5) will be
provided using algebraic inequalities and classifications,
which will demonstrate that the model and the theoretical
subgrid dissipation vanish for the same types of flow. In Sec.
III the model will be applied to LES of a mixing layer and a
channel flow.

II. THEORY

In this section it will be shown how model(5) emerges
from the investigation of algebraic properties of the theoret-
ical subgrid dissipation. We will distinguish between 320
types of flows and algebraically classify these flows into ten
groups. The theoretical subgrid dissipation will be proven to
be zero for 13 laminar flow types. Next we will consider
flow functionals which are entirely expressed in first-order
velocity derivatives. In particular the functionalBb, used in
the model(5), exactly vanishes for the 13 laminar flow types
mentioned above. An upper bound proportional for the the-
oretical subgrid dissipation will also be derived and this re-
alizability condition will indicate howBb should be used in
actual models. Other inequalities will be employed to esti-
mate the value of the model coefficientc.

The theoretical subgrid dissipation is usually defined by

Dt = − ti jai j = − ti jSij , s9d

which can be rewritten as

Dt = − st,ad = − st,Sd, s10d

where (. , .) is an inner product for the space ofs333d
matrices, similar toR9. The inner product defines the norm
iti2=st ,td. In this way zero subgrid dissipation means thatt
is orthogonal toa andS.

In practice it is often desirable to adopt a nonuniform
filter, in order to allow a spatially variable filter width. It is
well known that for nonuniform filters the commutation be-
tween spatial derivatives and the filter is lost. Consequently,
the dissipation from resolved to subgrid scales is not gov-
erned byDt only, but is also influenced by the so-called
commutator errors. The commutator errors make a rigorous
mathematical treatment of the nonuniformly filtered equa-
tions much more difficult, although it can be proven that
global conservation of mass and momentum is ensured for
self-adjoint nonuniform filters.9 In this paper we assume
commutation between filter and spatial derivative. Thus we
presently neglect the dissipation caused by the commutator
errors and optimize the algebraic structure of the eddy vis-
cosity by consideringDt only. In the practical implementa-
tion of the model the filter does not explicitly occur, only the
filter width, which can easily be taken nonuniform. This does
not mean that the subgrid model and the implicit(basic) filter
are independent, since the model replaces the exact turbulent
stress, whose distribution and magnitude depend strongly on
the order property and cutoff of the basic filter.10 In this
section we will first derive that for arbitrary commutative
filters the propertyDt=0 is satisfied in the case of at least 13

flow classes. Afterwards, the spherical top-hat filter will play
an important role to prove thatDt=0 does not hold in gen-
eral for other entire flow classes(see the Appendix).

In the following we thus derive thatDt vanishes for
certain types of derivative matrices of unfiltered velocities,
xi j =]iuj. Consider a fixed locationx in V and an open local
space Vx around x. Let G be the space of all three-
dimensional kernel filtersG which (1) are linear and normal-
ized, (2) have a closed supportVx8 inside Vx, and (3) com-
mutate with spatial derivatives. A robust eddy viscosity
should not unnecessarily become zero, so we try to find the
flows that have zero subgrid dissipation without imposing
more restrictions on the filter.

Using the linearity and normalization of the filter, the
turbulent stress tensor can be written as8

ti j = uiujsxd − uisxdujsxd − ujsxduisxd + uisxdujsxd

=E
Vx8

Gsx,ydfuisyd − uisxdgsujsyd − ujsxdddy= vi
xv j

x,

s11d

wherevi
xsyd=usyd−uisxd, which is unequal to the usualui8.

This reformulation immediately shows thatti j =0 if ui or uj is
constant onVx. It is remarked that constantui on Vx implies
zero]mui on Vx and zero]mui in x.

To find local flow types withDt=0 in x, we start with
one constant velocity component, sayu1. Consequently,
t1j ,]iu1, and]iu1 are zero. Then the conditionst ,ad=0 re-
duces to

t22]2u2 + t23]2u3 + t23]3u2 + t33]3u3 = 0. s12d

This equation is satisfied if, for example,

]2u2 = ]2u3 = ]3u2 = ]3u3 = 0. s13d

Only two derivatives are allowed to be nonzero; the theoret-
ical subgrid dissipation is zero if

xi j = 10 ]1u2 ]1u3

0 0 0

0 0 0
2 s14d

on Vx.
The only other possibilities to satisfy Eq.(12) for an

entire class require zerot22,t23, or t33. To achieve this, an
additional constant velocity component is necessary, sayu2,
which implies zerot2j. Finally ]3u3 and consequently]3u3

have to be zero, and then Eq.(12) is satisfied. The derivative
matrix that is left over leads to a zero subgrid dissipation:

xi j = 10 0 ]1u3

0 0 ]2u3

0 0 0
2 s15d

on Vx. The matrices(14) and (15) represent simple locally
laminar shear flows.

The arguments can be repeated with a cyclic interchange
of indices: 1→2→3→1. The total result consists of six ma-
trices with the following pairs of nonzero components:
h]1u2,]1u3j ; h]2u1,]2u3j ; h]3u1,]3u2j and h]2u1,]3u1j ;
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h]1u2,]3u2j ; h]1u3,]2u3j. This includes the trivial solution
with nine zero velocity derivatives and the six possibilities of
the simplest shear flows, which have only one nonzero ve-
locity derivative]iuj with i Þ j . The Appendix proves that the
types of derivative matrices withDt=0 are restricted to the
ones just mentioned, in case no additional limitations are
imposed on the filter.

To formalize the approach above, an algebraic classifi-
cation will be introduced that distinguishes between 320
types of flows, separated into ten classes. For a given number
n and flow functionalJ we define the set of flow types for
which the derivative matrix hasn zeros andJ=0. The corre-
sponding sets of binary matrices are called the “flow alge-
bra” of J.

For this purpose we define an operator that transforms a
matrix field into a binary matrix:

sPxdi j = H0 if xi j = 0 onVx

1 if xi j Þ 0 on Vx.
J s16d

A velocity field is not divergence-free if its derivative matrix
x has precisely one nonzero diagonal element. Therefore, we
defineZ as the set of all binary matrices except those that
have precisely one nonzero diagonal elements. The setZ
contains 29−3326=320 matrices. In addition the classZn

denotes the set of all binary matrices inZ with n zero ele-
ments. The caseJ=0 in Table I lists the number of elements
within each class.

For a given flow functionalJ, for example, the subgrid
dissipation, we define

QnsJd = hz P Zn us∀ uds∀ G P GdsPx = z ⇒ J = 0dj ,

s17d

wherex is the unfiltered velocity derivative matrix. The set
QnsJd represents all local flow types withn zero velocity
derivatives andJ=0. We call the collectionhQnsJdj the flow
algebraof J.

The flow algebra for the theoretical subgrid dissipation
Dt has been derived above and the sizes ofQnsDtd are sum-
marized in the second line of Table I. Table I also summa-
rizes the flow algebras of five functionals that are entirely
based on the filtered velocity derivative matrix. An algebraic
computer program was developed to obtain these results. The
most important and relatively small flow algebra is listed in
the Appendix. This flow algebra consists of 13 matrices.
There are only two fundamentally different solutions, repre-

sented by Eqs.(14) and (15). The other eleven matrices can
be derived from these two types by cyclic interchange of
indices and/or setting one or two nonzero elements to zero.

A certain functionalJ might be a good candidate to in-
corporate into an eddy viscosity ifhQnsJdj is close to
hQnsDtdj. The first functional investigated isiSi2, relevant
for the Smagorinsky eddy viscosityCS

2D2uSu with uSu2
=2iSi2. The other functionals are based onb, defined by Eq.
(7):

Ab = 2kb = bii = l1 + l2 + l3, s18d

Bb = b11b22 − b12
2 + b11b33 − b13

2 + b22b33 − b23
2

= l1l2 + l1l3 + l2l3, s19d

Cb = detb = l1l2l3, s20d

Db = − sb,Sd = − bi jSij . s21d

The eigenvaluesli are the roots of the characteristic polyno-
mial. Like the eigenvalues, the coefficients of the polyno-
mial, Ab , Bb, andCb, are invariant under rotation. Asb is
positive semidefinite, eachli is a positive real number. Con-
sequently,Ab , Bb, and Cb are always positive, unlike the
dissipation of the gradient modelDb.

In one case the flow algebra is exactly the same as for
the theoretical subgrid dissipation; the setshQnsBbdj and
hQnsDtdj are identical(see the Appendix), which means that
Bb andDt vanish for the same types of flow. Thus, for inho-
mogeneous turbulence the algebraic theory strongly supports
an eddy viscosity based onBb. The fact thatBb is positive
allows us to define positive eddy viscosities in a natural way;
ad hoc procedures to avoid negative diffusion are not re-
quired.

The Smagorinsky eddy viscosity, proportional toiSi,
only vanishes in the trivial casex=0, like Ab. Compared to
Dt, the flow algebras ofCb andDb are too large. The matri-
ces

1 0 ]1u2 0

0 0 ]2u3

]3u1 0 0
2, 1 0 ]1u2 0

]2u1 0 ]2u3

0 ]3u2 0
2 s22d

are examples for whichDb is zero. Due to the relatively large
size of the flow algebra, the dissipation of models based on
Cb and Db might be insufficient. In addition,Db is not al-
ways positive. Consequently, simulations11 which use an
eddy-viscosity proportional toDb suffer from numerical in-
stabilities, unless additional techniques are applied, such as
clipping or ensemble averaging in the dynamic model. The
positiveness ofBb is clearly an advantage.

To propose an appropriate relationship betweenne and
Bb, a realizability argument forne is used. For positive fil-
ters,t is positive semidefinite,8 which implies

iti ø At = 2kt, s23d

0 ø 3Bt ø At
2 = 4kt

2, s24d

TABLE I. The number of elements inQnsJd, that is, the number of flow
types withn zero derivatives andJ=0. A blank space means zero elements.

J Q0–2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q0–9

0 43 66 81 66 39 18 6 1 320

Dt 6 6 1 13

iSi 1 1

Ab 1 1

Bb 6 6 1 13

Cb 6 30 48 36 18 6 1 145

Db 3 14 15 6 1 39
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0 ø 27Ct ø At
3. s25d

The first inequality is proven with use of the realizability
conditions for t, for example,t12

2 øt11t22. The other in-
equalities can be proven by maximizing the functionsBt /At

and Ct /At after the substitution ofr =l2/l1ø1 and s
=l3/l1ø1 into Eqs.(18) and (20).

A fundamental result for the theoretical subgrid dissipa-
tion is obtained if the Schwarz inequality and inequality(23)
are applied:

Dt = − st,Sd ø iti iSi ø 2ktiSi. s26d

This means that the theoretical subgrid dissipation is
bounded by a term which is proportional to the subgrid ki-
netic energy. If the filter is replaced by the Reynolds averag-
ing operator, the inequality expresses an upper bound for the
standard turbulent production.

The modeled subgrid dissipation, 2neiSi2, ideally equals
Dt. In that case, inequality(26) results in the following real-
izability condition:

ne ø ktiSi−1. s27d

Compare Ref. 8, where a similar inequality was derived to
estimatek for eddy-viscosity models.

Condition(27) is satisfied by the following class of eddy
viscosities:

ne =
c0kt

1−2qs 3
4Btdq

iai
ø

c0kt

iai
ø

c0kt

iSi
s28d

with qù0 andc0ø1, while we used

iSi = 1
2ia + aTi ø

1
2iai + 1

2iaTi = iai. s29d

It is remarked that for one-equation models12 with ne

=ckDÎkr, condition (27) implies neùck
2D2iSi, expressing

that ne should always be larger than some Smagorinsky
model. From the perspective of realizability, it would be
more logical to definene=ckktiai−1, that is, Eq.(28) for q
=0.

A family of practical models is obtained from definition
(28) if kt andBt are replaced bykb andBb:

ne =
ckb

1−2qBb
q

iai
. s30d

The isotropic casesDi =Dd reduces to

ne
iso = c̃D2Ag

s1/2d−2qBg
q; g = aTa; c̃ = 22q−1c. s31d

This shows that the model is essentially built of the first two
principal invariants of the positive semidefinite matrixaTa.

To prove that the isotropic case is rotation invariant, we
introduce a rotation matrixr and define the rotation of coor-
dinates byx̃=rx and ũ=ru. As r−1=rT, the velocity deriva-
tive matrix in the new coordinates readsã=rarT. Conse-
quently ãTã equals raTarT, which implies that the
invariants ofaTa andãTã are the same. This rotation invari-
ance implies that the isotropicne equals zero for all rotations
of the flow types inhQnsBbdj.

Although not rotation invariant, theanisotropicne does
vanish for all rotations of flow types inhQnsBbdj. To prove

this, we consider a velocity fieldu which, after a rotation of
coordinates, attains the form in Eqs.(14) or (15). Thus for
some rotation matrixr, we havex̃=rx,ũ=ru, andã=rarT,
such thatã has the form(14) or (15). Defining a diagonal
matrix j with D1

2,D2
2, andD3

2 on the diagonal, the anisotropic
b can be rewritten as

b = aTja = ãTj̃ã, j̃ = rjrT, s32d

wherej̃i j is in general a full matrix. Ifã is of the type(14),
an explicit calculation ofb=ãTj̃ã gives

1
0 0 0

0 ã12
2 j̃11 ã12ã13j̃11

0 ã12ã13j̃11 ã13
2 j̃11

2 , s33d

while for ã of the type(15) we find thatb equals

10 0 0

0 0 0

0 0 ã13
2 j̃11 + ã13ã23sj̃21 + j̃12d + ã23

2 j̃22
2 . s34d

It can simply be verified that for both casesBb=0 and thus
the anisotropicne equals zero as well.

The parameterq in definition(28) controls the activity of
the model near walls and transitional regions, where it is less
active for higherq. To quantify this, suppose that the flow is
of the type(14) or (15) plus a perturbation of small ampli-
tudea. Then it is easy to prove thatne,a2q. The eddy vis-
cosity is first order in the perturbation of a locally laminar
shear flow in caseq= 1

2. In addition, the eddy viscosity is
exactly zero at a no-slip wall. At a wall the streamwise and
spanwise derivatives, say]1ui and]3ui, are zero. As the in-
compressibility constraint implies zero]2u2, the nonzero de-
rivatives can only be]2u1 or ]2u3. The velocity derivative
matrix at the wall is equivalent to the type(14), thusne=0.

Model (5) corresponds toq= 1
2:

ne = c
ÎBb

iai
ø

ciai
Î3

maxhD1
2,D2

2,D3
2j . s35d

The upper bound shows that there is no true singularity in the
model;ne should be taken zero foriai=0. A simple estimate
for the model constantc is obtained, if we assume thatne

approximately equals its upper bound in the case of homo-
geneous isotropic turbulence. In addition, substitutingDi

=D and iai<iSi, the Smagorinsky model is recovered for
c<2.5CS

2. As CS=0.17 is the theoretical value13 for homoge-
neous isotropic turbulence, we findc=0.07. To obtain robust
simulations in complex cases the practical value ofCS is
sometimes higher than the theoretical one. For example,CS

=0.2 has frequently been used in literature, which corre-
sponds toc=0.1 for the present model. Lower values ofCS

have also been used,CS=0.1, for example, which corre-
sponds toc=0.025. Note that a larger model constantc or CS

2

is equivalent to a largerD /h ratio.
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III. APPLICATIONS

The performance of the model emerging from the previ-
ous theoretical results is now illustrated for two cases: a tran-
sitional and turbulent mixing layer at high Reynolds number
and a turbulent channel flow at Ret=360. It will be demon-
strated that model(5) can successfully be applied in actual
LES and is able to handle the complications caused by high
Reynolds number, transition, and walls.

In this entire section the parameters in the model equal
q= 1

2 andc=0.07. Second-order accurate incompressible and
compressible flow solvers are used in order to mimic the low
order of accuracy that is usually achieved in industrial codes.
The present model will be compared with the Smagorinsky
model3 and the dynamic eddy-viscosity model proposed by
Germanoet al.4

The first application is a LES of an experiment by Urban
and Mungal:14 a weakly compressible mixing layer at high
Reynolds number. The simulations are temporal, the convec-
tive Mach number equals 0.25, and the initial mean velocity
profile u1=tanhsx2d is perturbed with uniform noise of a
small amplitude(0.01), restricted to the center region of the
shear layer. The velocity differenceU1−U2 equals 2, while

d0, which denotes half the initial vorticity thickness, equals
1. The domain contains 903 uniform cubic grid cells of size
D=h=1. The Reynolds number ReD=105 is high, as in the
experiment. The small value of the Kolmogorov length scale,
about 0.001D, indicates that direct numerical simulation
(DNS) of this flow remains impossible in the near future.

The numerical method is the second-order finite volume
methodA described in Ref. 15, where it was found to be as
accurate as a fourth-order method in caseD=h. The bound-
ary conditions and implementation of the dynamic model are
the same as in Ref. 16. For very small values of the new
eddy viscosity, machine precision errors inherent in floating
point operations may contaminate the calculation ofBb in
practice. For this reason the simulations in this section used
ne=0 if Bb,10−8. This statement also numerically repro-
duces the correct analytical limit foriai→0.

Figures 1–3 show that the present model performs better
than the standard Smagorinsky model and is as good as the
dynamic Smagorinsky model. The dynamic model is known
to produce relatively accurate results in mixing layers at low
Reynolds numbers, where comparison with DNS data is
feasible.16 The computational effort needed for the entire

FIG. 1. Mixing layer results that demonstrate that unlike the Smagorinsky model, the dissipation of the present model is small in transitional flow;(a) total
kinetic energyeuiuidx normalized by1

4sU1−U2d2d0
3, (b) subgrid dissipatione,neuSu2.dx2 normalized by1

8sU1−U2d3, and(c) ratio knel / kD2uSul in the center
plane. Present model(solid), dynamic Smagorinsky(dashed), standard Smagorinsky(dotted), and 0-model(dash-dotted).
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FIG. 2. Mixing layer.(a) Momentum thickness normal-
ized by d0. Present model(solid), dynamic Smagorin-
sky (dashed), and standard Smagorinsky(dotted).

FIG. 3. Mixing layer.(a) Streamwise and(b) normal turbulent intensity in the center plane(normalized byU1−U2); (c) Reynolds shear stress in the center
plane (normalized bysU1−U2d2). Present model(solid), dynamic Smagorinsky(dashed), standard Smagorinsky(dotted), and experiment by Urban and
Mungal (Ref. 14) (diamonds).
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simulation with the present model in the current compress-
ible code was only 50% of the cost of the dynamic simula-
tion. Like the Smagorinky model, the present model is rela-
tively cheap.

For the Smagorinsky model the relatively low valueCS

=0.1 is used to give this model a fair chance for turbulent
shear flow. Note that the Smagorinsky eddy viscosity for
CS=0.1 is approximately three times lower in transition than
for CS=0.17. Despite this low value, the Smagorinsky model
is much too dissipative in transition due to the presence of
mean shear[Fig. 1(a)]. As a consequence the physical insta-
bility mechanisms are suppressed and the turbulence is de-
layed. Considerably more dissipation and delay were ob-
served forCS=0.17, which in fact would be the correct value
of CS in the turbulent stage.

Unlike the Smagorinsky model, the present model is ad-
equate in transition, where its dissipation is relatively small
[Fig. 1(b)]. This is achieved without adopting a model con-
stant that is lower than its theoretical isotropic estimate. The
evolution of the total subgrid dissipation also shows that the
total subgrid dissipation increases more slowly than for the
dynamic model. This indicates that the model is less flexible
than the dynamic model, but a larger value ofq in Eq. (30)
will enlarge its flexibility and produce a sharper curve of the
subgrid dissipation.

The mean level of the new eddy viscosity in the turbu-
lent regime is close to the mean level that a Smagorinsky
eddy viscosity withCS=0.17 would produce. This is demon-
strated in Fig. 1(c), which contains the evolution of
knel / kD2uSul in the center plane. Figure 2 shows the evolution
of the momentum thickness. It hardly grows during transition
(until t=30), while a strong, approximately linear growth is
observed in the fully turbulent regime.

For complex turbulent flows or high Reynolds numbers,
LES without a subgrid model(the 0-model) is often not suf-
ficiently robust, unless special numerical techniques are em-
ployed that introduce artificial numerical dissipation. For the
present mixing layer case the total kinetic energy of an LES
with the 0-model blew up after some time and the simulation
could not be completed[Fig. 1(a)].

Figure 3 shows that the predictions by the present model
reasonably agree with the experimental results. The center
line values of the streamwise and normal turbulent intensity
and Reynolds shear stress have been plotted, because these
values can simply be compared with the experimental results
found in Ref. 14. The unresolved parts of the Reynolds
stresses have not been included, which would marginally im-
prove the predictions. The standard estimate of the unre-
solved part of the Reynolds shear stress is given by
k−neS12l,

17 which was never more than 2%. In contrast to the
Reynolds stresses, the turbulent dissipation is almost entirely
in the subgrid scales; the resolved dissipation equals less
than 0.1% of the subgrid dissipation in the turbulent regime.

In addition, simulations of the mixing layer flow have
been performed usingc=0.1, instead of 0.07, and/or another
initial perturbation. The conclusions regarding the perfor-
mance of the models remain the same.

Figures 4 and 5 contain an example of implementation
for turbulent plane channel flow with Ret=360. These results

are obtained with an incompressible code that uses a second-
order accurate energy-conserving discretization of the con-
vective terms. The viscous terms are treated with the discrete
seven-point Laplacian, while the discretization of the subgrid
terms is according to Ref. 16. The collocated nonuniform
grid contains 47363347 cells in the domain 6H32H
32H, usingDi =hi. The fifth grid point in the normal direc-
tion is at y+=11. The temporal discretization employs
Adams–Bashforth one for the convective and forward Euler
for the viscous and subgrid terms. The initial condition con-
sists of the mean flow profilesy/Hd1/7 plus a sinusoidal per-
turbation. Statistical averaging is performed from 10H /ut

until 30H /ut. The flow is driven by a constant pressure gra-
dient.

Figures 4 and 5 show that the present model is also able
to produce adequate results for wall-bounded shear flow.
Taking into account that the numerical method is only sec-
ond order, there is reasonable agreement with the DNS data.
The statistics from the DNS at Ret=360(Hu and Sandham18)
have been downloaded from www.afm.ses.soton.ac.uk/;zhi/
channeldata. The documentation18 shows that mean flow and
turbulent intensities collapse with those from the case Ret

=395 published by Moseret al.19 The Reynolds number of
the channel flow is sufficiently low to allow a LES without a
subgrid model. Figures 4 and 5 include this simulation.

Like the dynamic model but unlike the standard Smago-
rinsky model, the present model shows an appropriate near-
wall behavior. The mean flow profiles for the present and
dynamic models are close to the DNS data, while the mean
flow for the Smagorinsky model is much too low[Fig. 4(a)].
Figure 4(b) shows the three different eddy viscosities. Both
the present eddy viscosity and dynamic eddy viscosity are
reduced in the near-wall region, in contrast to the Smagorin-
sky eddy viscosity. The value of the present eddy viscosity is
zero at the wall, in agreement with the analytical prediction
from Sec. II. Thus the near-wall behavior of the present
model is appropriate, although there are differences with the
dynamic model.

Figure 4(c) estimates the turbulent dissipation for the
large-eddy simulations. The turbulent dissipation can be
written as a resolved plus an unresolved part. The resolved
part is defined asknuS8u2l where Sij8 denotesSij −kSijl. The
unresolved part is the average of the dissipation term in the
kt equation. Assuming that the production and dissipation of
subgrid scales are in equilibrium, we can estimate the unre-
solved turbulent dissipation by −kti jSijl. This leads to
kneuSu2l, known as the subgrid dissipation, that is, the dissi-
pation from resolved towards subgrid scales. According to
Fig. 4(c), the turbulent dissipations for the present and dy-
namic models are not far from the DNS data and better than
for the 0-model. In the case of the present model and dy-
namic model, the subgrid dissipation is about 40% and 30%
of the total turbulent dissipation, respectively.

Table II summarizes the skin-friction coefficients, ob-
tained from the mean velocity profiles. The present model
predicts both coefficients within 2% error of the DNS values.
The dynamic model is also good, much better than the
0-model, which shows errors of about 10%. The Smagorin-
sky model is completely out of range. The nonzero contribu-
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tion of the Smagorinsky model to the wall shear stress has of
course been included.

The left-hand side of Fig. 5 compares resolved turbulent
intensities and shear stress with theunfilteredDNS data. This
approach is usually followed in literature. A better agreement
would be obtained if the resolved quantities were compared
with filtered DNS data. However, there is a third approach,
namely, to compare unfiltered DNS or experimental data
with the sum of the resolved and unresolved part of the Rey-
nolds stress tensor.

The unresolved part of the Reynolds stress tensor can be
approximated bykti jl (see, e.g., Ref. 16, pp. 382–383, and
Ref. 17), which becomesk−2neSij +

2
3ktdi j

l for eddy-viscosity
models. A problem is that the unknown trace of the turbulent
stress tensor has been lumped into the pressure. However, the
realizability inequality(27) offers the modelkt=c1neiSi with
c1ù1. Takingc1=2Î2, we havekt=2neuSu, which according
to Ref. 8 is a good approximation in case of the Smagorinsky
model in a turbulent mixing layer. It is remarked that the
estimate ofkt can also be used to derivep from the modified
pressurep+ 2

3k. Another option to correct the resolved Rey-

nolds stresses is to add a fraction ofkbi jl (compare Ref. 16),
which in case of the present model would not involve extra
calculations.

The right-hand side of Fig. 5 contains the “corrected”
turbulent intensities and corrected Reynolds shear stress, ob-
tained after adding up the resolved and unresolved parts of
the Reynolds stresses usingkt=2neuSu. In fact all profiles
benefit from these corrections. In particular, the peak values
of the normal and spanwise profiles significantly increase,
while the Reynolds shear stress for both the present and dy-
namic models also considerably improves. Figure 5(d)
clearly illustrates that the Smagorinsky model considerably
contributes to the wall-shear stress in contrast to the dynamic
and the present models. The 0-model somewhat overpredicts
the turbulent shear stress.

Figure 5 thus demonstrates that the present model pre-
dictions of the turbulent intensities and Reynolds shear stress
are satisfactory and in fact quite similar to the dynamic case.
It is remarkable that the Smagorinsky model without wall
damping also gives rise to acceptable second-order statistics.
The poor near-wall behavior of this model apparently affects

FIG. 4. Channel flow.(a) Mean streamwise velocity(normalized byut), (b) subgrid eddy viscosityknel (normalized byutH), and(c) turbulent dissipation and
subgrid dissipation(normalized byut

3/H). DNS (Ref. 18) (circles), present model(solid), dynamic Smagorinsky(dashed), standard Smagorinsky(dotted), and
0-model(triangles). The subgrid dissipationkneuSu2l is shown for the present model(pluses) and for the dynamic model(crosses).
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the mean flow much more than the Reynolds stresses. Not
only the Smagorinsky but the 0-model also produces accept-
able second-order statistics. According to the left-hand side
of Fig. 5, the 0-model seems the best. However, after inclu-

sion of the unresolved contributions, the second-order statis-
tics of the present and dynamic models significantly improve
and are not worse than those of the 0-model.

Summarizing Figs. 4 and 5 and Table II, we have found

FIG. 5. Channel flow. Resolved(a) and corrected(b) turbulent intensities(normalized byut). Streamwise intensity(highest set of curves), spanwise intensity
(middle set), and normal intensity(lowest set). Resolved(c) and corrected(d) Reynolds shear stress(normalized byut

2). DNS (Ref. 18) (circles), present model
(solid), dynamic Smagorinsky(dashed), standard Smagorinsky(dotted), and 0-model(triangles). Top curves in(d) show the correctionsk−neS12l.

TABLE II. Channel flow. Skin-friction coefficientscf andCf, based on center line and bulk velocity, respec-
tively, and computed Reynolds number. The percentages denote the relative deviation from the DNS results. In
all casestw was calculated using12sul +urd /d, whereul andur are mean velocities at the first grid point off the
left/right wall andd the distance to the nearest wall. The bulk velocity in each case was calculated with the
trapezoidal rule.

Computed Ret cf Cf

DNSa 364 0.005 06 0.006 67

Present model 361 0.005 14s+1.6%d 0.006 57s−1.5%d
Dynamic model 359 0.005 02s−0.8%d 0.006 36s−4.6%d

Smagorinsky model 365 0.007 11s+41%d 0.009 51s+43%d
0-model 363 0.005 64s+11%d 0.007 24s+8.5%d

aReference 18.
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that the best all-round predictions for channel flow are given
by the present and dynamic models. On the whole these
models outperform the 0-model and are much better than the
Smagorinsky model(without wall damping). It is stressed
once more that LES with the 0-model is in general not ro-
bust, which was shown by the mixing layer case in this sec-
tion. Nevertheless, for low Reynolds numbers and low order
methods the 0-model is sometimes able to produce reason-
able statistics, which is shown in Fig. 5. However, in a LES
that uses the 0-model(without a tuned numerical upwind
scheme), the amount of small scales in the resolved field is
usually too large. In this way the molecular dissipation is
able to take over the role of the subgrid dissipation.16 Due to
the excessive amount of small scales, results obtained with
the 0-model will be considerably more sensitive to the nu-
merical discretization than results obtained with eddy-
viscosity models.

The isotropic form of the present model, which corre-
sponds toDi =D in Eq. (5), can also be applied to turbulent
channel flow. For this purpose the standard expressionD
=sh1h2h3d1/3 can be used. In that case the isotropic filter
width in the near-wall region will be quite large in terms of
h2. If this is undesirable,D can be taken equal to the mini-
mum of sh1h2h3d1/3 and the distance to the nearest wall,
which ensures that the support of the implicit isotropic top-
hat filter remains inside the flow domain.

We have thus shown that the model produces satisfac-
tory results for two different flow cases, using a single value
of the model constant, which was equal to its theoretical
estimate in isotropic turbulence. Apparently, the present
model is much more able to adapt to different flow types
than the Smagorinsky model.

In the previous two test cases the present model was
found to perform as good as the dynamic model. In the par-
ticular case of plane channel flow better results might be
achieved if the approximate deconvolution model(ADM )20

is used. However, ADM is much more complicated than the
model proposed in the present paper; it involves filter inver-
sion by explicit filtering operations and a dynamic relaxation
term. In addition, we recall that the accuracy ofa posteriori
LES is not only connected to the model but also to the
numerics.15 The excellent ADM results were obtained with a
spectral method, which is inapplicable in complex geom-
etries. Model(5) is very easy to implement and this paper
quantifies that it leads to satisfactory results, even for low
order schemes. Thus, the present model seems well suited for
engineering applications.

IV. CONCLUSIONS

A family of eddy-viscosity models has been proposed.
They have the intrinsic ability to vanish for precisely the
flow types with zero theoretical subgrid dissipation. For this
purpose the models employ the second principal invariant of
the gradient model. The specific model tested, Eq.(5), rec-
ognizes a perturbation of a laminar shear flow as a first-order
effect. The models satisfy a fundamental realizability condi-
tion, which has been derived for the general eddy-viscosity
hypothesis. The realizability condition suggests an alterna-

tive form of the eddy viscosity in the so-called one-equation
models. In case of the Reynolds averaging operator, the in-
equality expresses an upper bound of the turbulent produc-
tion in terms of the turbulent kinetic energy.

Although essentially not more complicated than the stan-
dard Smagorinsky model, the present model was found to be
much more accurate in LES of inhomogeneous turbulence.
The model was tested in two different flows, a turbulent
channel flow and a transitional and turbulent mixing layer at
high Reynolds number. In fact, it was observed to be ap-
proximately as accurate as the dynamic Smagorinsky model.
A reasonable agreement with DNS data(channel flow) and
experimental data(mixing layer) was observed, using
second-order numerical methods. It is concluded that the
model shows an appropriate transitional and near-wall be-
havior and remains robust in high Reynolds number applica-
tions.

The present model is a base model and it can obviously
be used in conjunction with existing models in a so-called
mixed framework. Further improvement of model(5) is pos-
sibly achieved if the dynamic procedure4 or the adjoint fil-
tering technique9 is applied. The latter technique leads to the
model −Fas2neFSijd, which includes backscatter. However,
the main result of this paper is that a simple eddy-viscosity
model exists which does not need such techniques to provide
acceptable results for two inhomogeneous flows using a
single value of the model constant. The eddy viscosity has
the intrinsic ability to adapt to the local level of turbulent
activity, while it does not need more than the local filter
width and the first-order derivatives of the velocity field.
Because of these properties, applications of the model in
LES of more complex flows seem promising.
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APPENDIX: FLOW ALGEBRA

The complete flow algebrahQnsBbdj=hQnsDtdj is listed
below:

5510 1 1

0 0 0

0 0 0
2,10 1 0

0 0 0

0 1 0
2,10 0 1

0 0 1

0 0 0
2,

10 0 0

1 0 1

0 0 0
2,10 0 0

1 0 0

1 0 0
2,10 0 0

0 0 0

1 1 0
26,

510 1 0

0 0 0

0 0 0
2,10 0 1

0 0 0

0 0 0
2,10 0 0

1 0 0

0 0 0
2,

10 0 0

0 0 1

0 0 0
2,10 0 0

0 0 0

1 0 0
2,10 0 0

0 0 0

0 1 0
26,510 0 0

0 0 0

0 0 0
266 .
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As Bb is only expressed in first-order derivatives, an alge-
braic computer program could evaluate for each of the 320
flow types whetherBb vanished or not. The binary matrices
corresponding to the derivative matrices for whichBb=0 are
exactly those listed above.

Next it is proven that the flow algebra ofDt is not larger
than these 13 matrices. According to definition(17), a binary
matrix z is not in the flow algebra ofDt if a filter and a
velocity field ui corresponding toz exist such thatDtÞ0.

We first consider the velocity derivative matrices with
precisely two nonzero elements, sayh]kui ,]luij. If one of
these elements is a diagonal element, the definition ofDt and
the first term in the Taylor expansion5–7

ti j =
Dk

2

12
]kui ]kuj + OsD4d sA1d

imply that in generalDtÞ0. If both nonzero elements are on
the diagonal, the incompressibility constraint may cause zero
Dt, but only if Dk=Dl. Anisotropic filters withDkÞDl pro-
duce DtÞ0. We conclude that matrices with at least one
nonzero diagonal element are not inhQnsDtdj.

In order to verify the nonzero pairs that do not contain a
diagonal element, a spherical top-hat filter with radiusR and
filter volume V is employed. The Taylor expansion of the
filtered velocity becomes

ui = ui +
R2

10
]m

2 ui +
R4

280
]k

2]l
2ui + OsR6d , sA2d

because the expressions

1

2!

3

4pR3E
V

x1
2dV=

R2

10
, sA3d

1

4!

3

4pR3E
V

x1
4dV=

R4

280
, sA4d

1

4!
S4

2
D 3

4pR3E
V

x1
2x2

2dV=
R4

140
sA5d

are the coefficients in front of]1
2ui ,]1

4ui, and]1
2]2

2ui, respec-
tively. Substitution of Eq.(A2) into the turbulent stress ten-
sor gives

ti j =
R2

5
]mui ]muj −

R4

350
]k

2ui ]l
2uj +

R4

70
s]l]k

2ui ]luj

+ ]lui ]l]k
2uj + ]k]lui ]k]lujd + OsR6d . sA6d

After excluding the diagonal elements, there remain 15
possible nonzero pairs of velocity derivatives, which are rep-
resented by the following five different cases:

h]1u2,]1u3j, h]1u2,]3u2j, h]1u2,]2u3j,

h]1u3,]2u1j, h]1u2,]2u1j . sA7d

The other ten pairs are covered by the application of cyclic
interchange of indicess1→2→3→1d to the five cases
above. In Sec. II we proved that the first two cases in expres-
sion (A7) belong to the flow algebra ofDt. However, the
third case is not in the flow algebra, because a corresponding

velocity field and a filter exist such thatDtÞ0. For u2=x1
2

andu3=x2
2, Eqs.(A2) and (A6) imply

Dt =
R4

350
s]2

2u3 ]1
2u2d]2u3 =

4x2R
4

350
Þ 0. sA8d

In a similar way it can be proven that the last two cases in
expression(A6) do not belong tohQnsDtdj. [It is easily veri-
fied thatBb also equals zero for the first two cases in Eq.
(A2) and nonzero for the last three cases.]

Suppose a given matrixz with preciselyn nonzeros is in
the flow algebra ofDt. As a consequence, the flow algebra
also contains each matrix derived fromz by replacing non-
zero components ofz with zero. This argument and the re-
sults for matrices with two nonzero elements do not allow
that nù3. This completes the proof thathQnsDtdj is not
larger than the set of 13 matrices.

Of course one could restrict the local filter spaceG and
only allow separablefilters, which can be written as a prod-
uct of three one-dimensional filters. If only separable filters
are allowed,hQnsDtdj is much larger. In that case it is equal
to hQnsDbdj, the flow algebra of the dissipation of the gradi-
ent modelDb. This means that for separable filters the theo-
retical subgrid dissipation also vanishes for the matrices in
Eq. (22). However, the most natural three-dimensional filter
with a finite support is a uniform average over a sphere(the
nonseparable spherical top-hat filter). The restriction ofG to
separable filters is apparently not the most logical choice.
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