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Abstract

A theory of the coupling of N systems of Navier-Stokes equations is presented. A set of coupled Navier-
Stokes systems contains the macroscopic equations of motion for flows of N different material components
or phases. Six postulates are formulated from which three Navier-Stokes sets are derived for arbitrary
N . The main postulate concerns the second law of thermodynamics, which the present sets satisfy for
arbitrary N . Appropriate averages of velocities and pressures distribute the entropy production of each
irreversible interaction process among the interacting components. Increase of entropy is guaranteed if
the interaction terms are suitably constructed from positive definite operators. A strictly irreversible
mass exchange law, expressed in the difference of Gibbs free energies of the exchanging components,
is proposed. Furthermore, the characteristic velocities of each Navier-Stokes set are investigated, since
their realness is required for well-posedness of the equations. For both Navier-Stokes sets with multiple
pressures, the characteristic velocities are proven to be real for arbitrary N . The canonical problem of
complex characteristics of incompressible multiphase flows with a single pressure is revisited. A solution
to this problem is found by generalizing the standard algebraic Stokes drag law to a positive definite
operator acting on the velocity difference. In this way, effects of forces due to nonuniform velocity fields
can be incorporated. A generalized drag law is specified by the inclusion of m-th order spatial derivatives
of the velocity differences between two components (m ≥ 2). The characteristic polynomial is derived
for an arbitrary number of components and its roots, the characteristic velocities, appear to be real.
This is rigorously proven for two- and three-phase flows, and conjectured to be true for flows with four
or more components. The linear stability of the incompressible one-dimensional case is also investigated.
Ill-posedness of the standard case leads to an infinite growth rate for infinitely short waves. In the case
of generalized drag, this growth rate becomes finite for even and neutral for odd m.

Keywords: Entropy inequality; Multicomponent flows; Multiphase flows; Intrafacial interaction terms;
Well-posedness; Characteristic velocities.
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1 Introduction

The equations which describe the motion of a single Newtonian fluid are the well-known Navier-Stokes
equations. These equations are formulated from basic physical principles: conservation of mass, mo-
mentum and energy. The total entropy of the system increases, consistent with the second law of
thermodynamics. If the fluid is incompressible the total kinetic energy decreases due to viscous dis-
sipation. The equations linearized around constant fields are also mathematically well-posed in the
sense of Hadamard. Well-posedness means existence and uniqueness of solutions and continuous depen-
dence of the initial data in appropriate spaces. Linear equations are well-posed only if the eigenvalues
(characteristic velocities) are real.

Many flows in nature and technology contain more than one component or phase. Flows relevant in
chemistry, biology or geophysics, for example, are often multicomponent or multiphase flows. Whereas
there is general consensus about the structure of the Navier-Stokes equations for a single fluid, basic
issues concerning the structure of the equations of motion for multiphase flows are much less resolved. A
macroscopic theory usually assumes that the motion of the N components are governed by a collection
of N interacting Navier-Stokes systems, which we call a Navier-Stokes set. The individual systems
are connected through forcing terms which represent the exchange of mass, momentum and energy
[15, 28, 21, 11, 9, 17, 24]. As the number of unknowns is larger than the number of equations, closure
assumptions have to be made in order to complete the theory. At this point numerous problems arise.
The most fundamental and unresolved problems are the violation of the second law of thermodynamics
and model equations which are mathematically ill-posed [25, 10, 11, 24]. Let us consider these two
important fundamental problems in more detail.

First, it is unclear whether there exists a multicomponent description which guarantees the second
law of thermodynamics to be satisfied for arbitrary N [28, 11, 27]. In fact complete descriptions which
satisfy the entropy law are known for N = 2 only [26, 3, 6, 22]. These works define a pressure for each
phase and an additional equation which relates the difference of these pressures to the evolution of the
volume fraction [7, 14, 21]. The present paper will present several Navier-Stokes sets which satisfy the
second law of thermodynamics for arbitrary N . Appropriate averages of velocities and pressures [6] will
be incorporated to distribute the entropy produced by the irreversible interaction processes among the
participating phases.

The second fundamental problem is that even the linearized versions of many systems of equations for
two-phase flows are known to be ill-posed in the sense of Hadamard [25, 10, 11, 24], that is the equations
linearized around a constant field have complex valued characteristic velocities. The initial boundary-
value problem cannot be solved; it is ill-posed in the sense of Hadamard. The problem already occurs
in the most simple system of multiphase flow: a system describing inviscid flows by two incompressible
components, different velocities, equal pressures and interaction through the Stokes drag force. Complex
characteristics correspond to an infinitely large growth rate for large wavenumbers (k → ∞) and occur
if the velocities of two components are unequal.

The introduction of standard viscous terms makes the canonical case with one pressure well-posed
[2]. Another possibility is to use two pressures and to prescribe the pressure difference by an additional
equation. Ramshaw and Trapp [25] found real characteristics in case the pressure difference acts as
a surface tension. Ransom and Hicks [26] and Baer and Nunziato [3] proved that the characteristics
are real if the pressure difference is governed by the volume fraction, or equivalently, if the evolution
of the volume fraction is controlled by the pressure difference. Nevertheless the fundamental question
remains (e.g. [11]): why is the most simple formulation, incompressible flow, single pressure and drag
force ill-posed? Why should viscosity necessarily play a fundamental role, except within the drag law?
Or why should a pressure relaxation term that controls the volume fraction be essential? It is important
to realize that the canonical problem is not always ill-posed; it is well-posed if the velocities of the two
phases are equal. Unlike the approaches mentioned above, we investigate regularizations which vanish for
equal velocities by expressing the additional terms in velocity differences. As the drag law is expressed in
velocity differences it may be natural to regard these terms as extensions to standard drag, provided that
they do not distort the dissipative property of the drag law. This condition is ensured by a formulation
of interaction terms in terms of positive definite operators.

It will be shown that the canonical problem of complex characteristics can be solved by a modification
of the drag law. It is remarked that the standard Stokes drag law holds for isolated bodies and assumes
an undisturbed free-stream velocity. To circumvent this limitation it is proposed to include high-order
derivatives of velocity differences into the drag, which physically represents the effects of a non-uniform
flow on embedded particles. In case of second-order derivatives, the extension may be interpreted as a
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generalization of the so-called Faxen force. Care is taken to ensure that the extension does not violate
the entropy law.

The property of real characteristics does not exclude the occurrence of instabilities, which may
represent physical Kelvin Helmholts instabilities [25, 23, 16] It is known that the linear growth-rate of
the inviscid instability of the hyperbolic tangent velocity profile is finite and that the corresponding
wavelength is seven times the shear layer thickness [19]. As a consequence, the instability of the wake of
a particle in multiphase flow will have a fundamental wavelength of a few particle diameters, provided
the particle Reynolds number is sufficiently high. Apparently, in a macroscopic description, physical
instabilities may occur at very short wavelengths.

In practical situations, not only real characteristics, but also a non-positive growth rate for sufficiently
large spatial wave numbers k is desirable. Positive growth rates for k → ∞ can be prevented by the
inclusion of surface tension [25]. Viscosity does not always prevent positive growth rates for k → ∞,
but only if the phases are compressible [2]. Likewise, multiple pressure approaches may allow positive
growth rates for infinite k in the incompressible limit [23]. There is thus sufficient reason to subject the
present Navier-Stokes sets to a linear stability analysis, in which we will focus on the limit k → ∞.

The organization of the present paper is as follows. Six postulates will be formulated and the basic
formulation of a Navier-Stokes set will be given (section 2). From these postulates, three possibilities for
the reversible (nozzling) parts of the interaction terms are naturally found in section 3, from which three
different Navier-Stokes sets will emerge (A-C). The generalized drag law, expressed as a positive definite
operator, will be formulated in section 4. In section 5 we will consider more irreversible processes and
prove that the second law of thermodynamics is satisfied for suitable forms of the interactions terms. The
issue of well-posedness will be investigated in section 6 and will turn out that the three Navier-Stokes sets
have real characteristics. The linear stability analysis will be performed in section 7. The incorporation
of external forces, an entropy increasing mass exchange law, and pressure jumps will be postponed until
section 8, to keep the derivations and equations in previous sections more concise and clear. Finally,
section 9 contains concluding remarks.

2 Basic formulation

In this section we present general concepts and the basic formulations of Navier-Stokes sets. Six postu-
lates are used to arrive at formulations of macroscopic equations for a mixture of N constituents:

1. The sum of all volume fractions φi equals one; vacuum regions do not occur.

2. The amount of mass, momentum, angular momentum and total energy are globally conserved in
arbitrarily small domains without external influences.

3. The total entropy of the mixture increases in the absence of external influences; the second law of
thermodynamics holds.

4. Locally, there is no change of variables for any component if all the velocity, temperatures and
pressure variables, ui, Ti and pi, are in equilibrium and the variables are not subject to an external
force or heat source. Equilibrium at a given location x occurs if

u1 = u2 = ... = uN , (1)

T1 = T2 = ... = TN , (2)

p1 = p2 = ... = pN , (3)

are constant in a neighbourhood of x. [In the macroscopic view unequal volume fractions φi and
unequal material densities ρi should be allowed in a state of equilibrium [24]. The definition of
equilibrium changes if pressure jumps between components are included (section 8)].

5. The equations for component i reduce to the standard Navier-Stokes equations at location x in
case φi = 1 in a neighbourhood of x.

6. The equations are Galilean invariant.

The conventional approach to obtain equations for multiphase flows is to introduce linear volume
or ensemble averages of physical quantities, such as the phase velocities (e.g. [10]). The approach is
complicated due to closure problems arising from averaging across time-dependent interfaces and from
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the averaging of nonlinear terms. For more than two components the geometrical problems become even
more complicated. Therefore, a different strategy is pursued in the present paper; the second law of
thermodynamics and other basic principles are postulated and then equations satisfying these principles
are derived by mathematical reasoning.

However, before we will continue with this approach, the meaning of the entropy postulate is explained
in terms of the conventional averaging approach. For this purpose we consider the dissipation of kinetic
energy, which is the dominant nonlinear contribution to the growth of entropy, in most cases. The
entropy law and dissipation inequality of total kinetic energy are formally equivalent in case of isothermal
multicomponent flow with incompressible material densities. The nonlinearity of kinetic energy implies
that part of the kinetic energy will be in microscale fluctuations. We define a local volume average q̄ of
a quantity q by by a spatial convolution filter operation

∫

G∆(x − y)q(y)dy with
∫

G∆(z)dz = 1, where
G∆ is a function of top-hat or Gaussian shape, for example. The filter removes the scales smaller than
the filterwidth ∆. In particulate flows ∆ should be larger than a few times the particle diameter at least.
This averaging operator conserves integrals [29] which means

∫

q̄ =
∫

q. We also define the microscopic
functions Xi(x), where Xi(x) equals 1 if component i is present precisely at x and 0 otherwise [10, 11].
The macroscopic volume fractions are subsequently defined by φi = Xi, the filtered velocities ûi are
defined by ûi = Xiui/φi and conservation of mass is expressed by

∂φi

∂t
+ ∇φiûi = 0 (4)

for constant material densities.
The total kinetic energy in all scales is denoted by K1 for constant ρi and is rewritten as:

∫

∑

i

1

2
ρiXiui · ui dV =

∫

∑

i

1

2
ρiXiui · uidV

=

∫

∑

i

1

2
ρiφiûi · ûi dV + K4, (5)

where the three integrals define K1, K2 and K3, respectively. The integration domain of these integrals,
V , represents the entire flow domain. In the absence of external influences, The physical total kinetic
energy K1 equals K2, because the local volume average, denoted by the ’bar’, is a conservative linear
operator [29]. K2 is decomposed in K3 + K4, where K3 represents the kinetic energy in scales larger
than ∆ and K4 = K2 − K3 represents the kinetic energy in scales smaller than ∆. In fact K4 is the
integral of the sum of half the traces of the Reynolds stress tensors.

The second law of thermodynamics prescribes that in a closed system (no external forces) K1 decreases
as a function of time. By analogy to the theory of the Reynolds stress tensor in single-phase flows, we
assume that the scales smaller than ∆ draw kinetic energy from the scales larger than ∆. As this transfer
of energy is global, it does not necessarily exclude local backscatter of energy from small to large scales
(see below). Due to the energy transfer from large to small scales the decrease of K1 implies a decrease
of K3, or in terms of entropy: the global increase of the physical entropy implies the increase of entropy
in the averaged scales.

The heuristic arguments above indicate that the variables in the present continuum approach may
be interpreted as local volume averages of the microscopic physical velocities, temperatures, pressures
and densities. In fact, a positive dissipation axiom of macroscopic variables has been proven to lead to
useful macroscopic equations for a wide range of complex physical phenomena, such as the description
of elasticity and the behavior of polymers [20]. It is therefore interesting to adopt such an axiom as
a starting point for the complex task of modeling multicomponent flows and investigate which models
emerge. As we mentioned before, closed models for multicomponent flows that satisfy the second law
existed for N = 2 only. In the present paper models that satisfy the second law are constructed for
arbitrary N .

The theory, naturally evolving from the postulates above starts to formulate Navier-Stokes equations
for each component i,

∂ρiφi

∂t
+ ∇ · ρiφiui = 0, (6)

∂ρiφiui

∂t
+ ∇ · ρiφiuiu

T
i + ∇φipi + ∇ · φiσi = Mi, (7)

∂ρiφiẽi

∂t
+ ∇ · φi(ρiẽi + pi)ui −∇ · ui · φiσi + ∇ · φiqi = Ei, (8)

5



where ρi, φi, ui, pi refer to the material densities, volume fractions, velocity vectors and pressures,
respectively. Each total energy ẽi is the sum of internal energy ei and 1

2
ui · ui. The viscous forces and

heat-transfer acting inside component i are denoted by the viscous stress tensor σi and viscous heat flux
qi. The right-hand sides of the equations represent the interactions between components; Mi denotes
the momentum and Ei the energy received from the other components. To keep the present formulation
relatively concise, incorporation of body forces and nonzero right-hand sides of the continuity equations,
corresponding to mass exchange, will be postponed until section 8.

For further reasons of transparency of the present equations, we did not write the macroscopic vari-
ables with an overbar. Reynolds stresses, which occur from the viewpoint of (mass-weighted) averaging
and represent the effect of scales smaller than ∆, are not explicitly visible in the equations, but their
effect is incorporated. The standard Boussinesq hypothesis is adopted, which means that our viscos-
ity represents the sum of the molecular viscosity and an eddy-viscosity (see [29, 30] for a discussion of
suitable eddy-viscosities). The thermal diffusivity is interpreted in a similar manner. More advanced
models may be chosen instead of simple eddy-viscosity models, for example mixed models or adjoint
filtered models [29]. These models are able to predict local backscatter of energy from small to large
scales, while remaining globally dissipative. A positive global dissipation is essential in order to get
stable large-eddy simulations of single-phase flows (e.g. [31]). Robustness of numerical computations is
a practical reason to impose the global entropy law, also on equations for multiphase mixtures.

The equations (6-8) are local conservation laws for mass, momentum and total energy, respectively.
The left-hand sides of reduce to the standard Navier-Stokes equations if the volume fraction φi equals
one. The occurrence of φi reflects that the mass fluxes, momentum fluxes and energy fluxes through an
infinitesimal volume face are multiplied with the local concentration of the component.

Postulates 1 and 2 are satisfied if we impose the following additional equations [28, 21, 6, 22]:
∑

i

φi = 1, (9)

∑

i

Mi = 0, (10)

∑

i

∫

EidV = 0, (11)

where the last constraint holds in case of appropriate boundary conditions, e.g. zero flux of energy
through the boundaries of the flow domain. Equation (11) is less severe than the conventional multiphase
energy constraint, which omits the integral (see the references just mentioned). There does not seem
to be a physical reason to enforce strict locality on the total energy exchange terms. However, we do
impose a local constraint on the momentum exchanges. This is based on the third law of Newton, which
leads to a pointwise balance of interaction forces, actually in a pairwise manner,

Mi =
∑

j

Mij , Mij = −Mji, (12)

where Mij represents the force exerted by component j upon component i. We note that definition
(12) implies equation (10). Equation (10) is not suitable for the modeling of surface tension. However,
surface tension effects can be taken account by including pressure jumps and additional source terms in
the momentum equation. This will be discussed in section 8.

The conservation of angular momentum requires a symmetric tensor σi, for which we assume the
Newtonian form, 2µiSui, where µi represents the viscosity of phase i. The symbol S is the tensor valued
strain operator, defined by

Sw = 1

2
∇w + 1

2
(∇w)T − 1

3
(∇ · w)I, (13)

where w is a three-dimensional velocity vector. To simplify the equations a bulk-viscosity of − 2

3
µi

is assumed. This assumption is not essential; increase of entropy can also be proven for larger bulk-
viscosities. The viscous heat flux qi is given by the Fourier law, −κi∇Ti, where κ is the heat-conductivity
and Ti the temperature of component i. We also assume that each material density ρi is related to pi

and Ti, through thermodynamic equations of state. If component i is incompressible, the equation of
state can be replaced with the assumption of constant ρi.

To find which possible structural forms of the interaction terms Mi and Ei satisfy the postulates, we
start to consider the second law of thermodynamics. The entropy ηi of a component is defined by the
Gibbs identity (see [3, 26, 6, 22]),

TiDiηi = Diei −
pi

ρ2
i

Diρi, (14)
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where

Di =
∂

∂t
+ ui · ∇ (15)

denotes the material derivative with respect to ui.
The second law of thermodynamics holds if the spatial integral of the weighted sum of all individual

entropies increases. For appropriate boundary conditions this means (Appendix 1):

∑

i

∫

∂ρiφiηi

∂t
dV =

∑

i

∫

(
φiµi

Ti

|Sui|2 +
φiκi

T 2
i

‖∇Ti‖2)dV +

+
∑

i

∫

1

Ti

(piDiφi − ui · Mi + Ei)dV ≥ 0, (16)

where |Sui|2 = 2Sui : Sui and ‖∇Ti‖2 = ∇Ti ·∇Ti. The first and second term at the right-hand side are
analogous to the standard single-phase entropy production terms caused by viscosity and temperature.
The last integral in equation (16) represents the contribution of the interaction terms to the entropy
production. It is evident that a possible violation of the entropy law arises from this integral.

It is convenient to split the interaction terms into reversible and irreversible parts. For the following
physical clarification we assume that there is no external force; the entire system is closed. Then the
irreversible terms represent the effects of a deviation from the state of equilibrium. According to the
definition of the state of equilibrium (postulate 4), nonequilibrium implies nonzero differences between
velocities, temperatures or pressures. Therefore, appropriate models for the irreversible interaction terms
are relaxation laws which irreversibly drive the flow towards equilibrium. The relaxation laws will be
expressed in the differences just mentioned. Additional terms are needed to ensure that the flow remains
in rest if it is in a state of equilibrium (postulate 4). Since these terms may be nonzero, even if the flow
is in equilibrium, they are not allowed to alter the entropy. We call these terms the reversible parts of
the interaction terms. The volume fraction does not occur in the definition of the state of equilibrium,
which implies that the reversible parts can depend on the differences between or gradients of volume
fractions. Their dependence on gradients of volume fractions is the reason to label these terms ”nozzling
terms”.

The reversible parts are denoted by a single prime and will be specified in section 3, whereas the
irreversible parts, denoted by double primes, will be specified in sections 4 and 5. The split reads:

Mi = M ′
i + M ′′

i , (17)

Ei = E′
i + E′′

i , (18)

where both M ′
i and M ′′

i satisfy equation (10) and both E′
i and E′′

i satisfy equation (11).
The last integral in (16) shows that appropriate expressions of Diφi in terms of pressure differences

may lead to quadratic forms of pressure differences, which always increase the entropy. This supports
the historical choice (reviewed in the Introduction) to supplement two-pressure two-phase systems with
with an equation that relates the change in volume fraction to the pressure difference. The sets B and
C in this paper employ equations for the volume fraction of the form:

Diφi = F ′
i + F ′′

i , (19)
∑

i

F ′
i = Y,

∑

i

F ′′
i = 0, (20)

Y =
∑

j

(uj · ∇φj). (21)

The variable Y is needed to ensure that the sum of volume fractions remains one. It implies that the
expressions above define N − 1 independent evolution equations for the volume fractions.

Sets B and C apply the equations (19) and the continuity equations (6) simultaneously. It is instruc-
tive to consider the incompressible continuity equations (ρi is constant), which read

∂φi

∂t
+ ∇ · φiui = 0, (22)

7



and constraint (9) implies a continuity equation for the mixture,

∑

i

∇ · φiui = 0. (23)

Like incompressible single-component flows, incompressible multicomponent flows do not require equa-
tions of state. In the next section, set A will appear to have a single pressure P and a Poisson equation
for P can be derived from condition (23). The solutions of the incompressible equations of sets B and
C (multiple pressures) also satisfy (22), and combining (19) and (22) implies the additional equations

F ′
i + F ′′

i = −φi∇ · ui. (24)

F ′′
i will be expressed in pressure differences, such that (24) can be used to obtain the extra N − 1

pressures and (22) to prescribe the incompressible volume fractions. The precise definition of F ′′
i will

be specified in section 5, where the physical meaning of (24) and thereby the meaning of (19) will be
clarified.

3 Interaction terms: Nozzling

In this section we will present the interaction terms M ′
i , E′

i and F ′
i for three Navier-Stokes sets. Expres-

sion (16) shows that these interactions do not contribute to entropy if

E′
i = −piDiφi + ui · M ′

i , (25)

whereas constraints (9-11) are satisfied if

∑

i

Diφi =
∑

i

ui · ∇φi, (26)

∑

i

M ′
i = 0, (27)

∑

i

(−piDiφi + ui · M ′
i) = 0. (28)

Equation (26) is equivalent to zero
∑

∂φi/∂t, which follows from equation (9).
To find suitable solutions for the equations (26-28), we start from the definition of equilibrium (pos-

tulate 4). If M ′
i was zero then a nonuniform volume fraction in a constant pressure field would generate

a change of momentum and consequently cause inequilibrium [24]. This undesirable feature can be
prevented if so-called nozzling terms are subtracted from ∇φipi. More specifically, the pressure terms
minus M ′

i should be independent of gradients of volume fractions in case of equilibrium. A natural
way to achieve this is to require that the effective pressure term equals φi∇pi in case all pressures are
the same. Therefore, we require that the nozzling terms (M ′

i) are equal to pi∇φi in case of N equal
pressures. Two straightforward choices to satisfy this requirement are:

M ′
i = P∇φi, (29)

and

M ′
i = pi∇φi − Z, (30)

Z =
1

N

∑

j

pj∇φj , (31)

where P represents an unknown pressure in the first case and Z is required to achieve
∑

M ′
i = 0 in the

second case.
Once M ′

i is known, substitution into equations (26-28) allows us to find solutions for Diφi, and,
finally, E′

i can be calculated from equation (25). Next, we will show how three Navier-Stokes sets (A-C)
emerge. The reversible parts of the resulting interaction terms have been summarized in Table 1. The
trivial solution, zero Diφ, M ′

i and E′
i, which, after the restrictive assumption of constant volume fraction,

satisfies postulate 4 and equations (26-28) is not included in Table 1.
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Set M ′
i E′

i F ′
i M ′

ij

A P∇φi −P∂φi/∂t − P (∇φi −∇φj)/N

B i < N pN∇φi pNui∇φi 0 0 (j < N)
pN∇φi (j = N)

i = N pN∇φN pN(uN∇φN − Y ) Y −pN∇φj (j < N)
0 (j = N)

C pi∇φi − Z piU∇φi − uiZ (ui − U)∇φi (pi∇φi − pj∇φj)/N

Table 1: Nozzling interaction terms for three Navier-Stokes sets A−C, where P =
∑

pi/N , U =
∑

ui/N ,
Y =

∑

ui∇φi and Z =
∑

pi∇φi/N . Set A is the only set with a single pressure. The momentum
exchange M ′

i equals
∑

j M ′
ij , which relies on constraint (9), which implies

∑∇φj = 0.

Substituting the first nozzling definition (29) into equation (28) yields

∑

i

(

− pi(
∂φi

∂t
+ ui · ∇φi) + ui · P∇φi

)

= 0. (32)

This is equivalent to
∑

i

(P − pi)Diφi = 0, (33)

since the sum of all ∂φi/∂t equals zero. The most straightforward way to satisfy (33) is to assume a
single pressure (pi = P ). Equation (25) implies

E′
i = −P

∂φi

∂t
, (34)

which leads to set A, the only set with a single pressure. The assumption of one pressure is a traditional
choice in the field of multicomponent flows. Although P can be interpreted as some average of all
pressures, it is not necessarily the actual pressure on the interfaces between components. The use of only
one pressure is less restricting than it seems, as the influence of pressure differences can be represented
by additional interaction forces [24]. Another option is to include multiple pressures explicitly, which is
the case for the following two sets, B and C.

Set B follows from the notion that equation (33) can also be satisfied by F ′
i = 0 for each i with

pi 6= P . As we do not yet incorporate irreversibility, F ′
i = 0 implies Diφi = 0, according to definition

(19). Condition (20) implies that F ′
i = 0 is allowed for N − 1 components only. Then equation (33)

implies that P must be equal to the pressure of the remaining component, say P = PN . Equations (20)
and (25) produce

F ′
N = Y, (35)

E′
i = pNui · ∇φi (i < N), (36)

E′
N = pN (uN · ∇φN − Y ). (37)

The nozzling terms in set B are equivalent to those proposed by Baer-Nunziato [3] in case N = 2.
The third set (C) is based on the second definition of nozzling, equation (30). It does not assume a

single pressure P , but a single convection velocity U for the equations of volume fractions, which implies

F ′
i = (ui − U) · ∇φi. (38)

Condition (28) reduces to
∑

i

piU · ∇φi =
∑

i

ui · Z, (39)
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which can only be satisfied by U =
∑

uj/N , which follows from substituting the definitions of U and Z
and subsequent interchange of the summations on the right-hand side of equation (39). The reversible
energy exchange terms in set C result from (25),

E′
i = piU · ∇φi − ui · Z. (40)

It appears that condition (33) also admits P =
∑

pi/N . For N = 2, set C is recovered with nozzling
terms equivalent to those proposed by Ransom and Hicks [26]. For larger N , the choice P =

∑

pi/N
leads to a set with F ′

i = Y/N . Analysis of the corresponding volume fraction equations shows that the
set is ill-posed and thus inferior to set C.

All reversible (or nozzling) interaction terms in the Navier-Stokes sets have been collected in Table
1. The nozzling terms always allow a decomposition in pairwise terms, for example M ′

i =
∑

j M ′
ij with

M ′
ij = −M ′

ji, consistent with Newtons third law. Explicit forms of M ′
ij for the sets A−C are presented

in Table 1. After the substitution of pi = P , the M ′
ij of set C reduces to M ′

ij of set A. Theoretically,

the pairwise decomposition is possible for E′
i and F ′

i as well; there are 1

2
N(N − 1) pairwise unknowns,

while they have to satisfy than N − 1 independent equations only.
Cases A and C have symmetric nozzling terms, i.e. the mathematical form of these terms is the same

for each component i. The terms are asymmetric in Set B, with the exception of M ′
i , which has the

same structure for each i. Including asymmetry in M ′
i as well, more asymmetric sets, can be found. For

example, suppose that M ′
i equals pi∇φi for i < N and pN∇φN − NZ for i = N . Then equations (25)

and (38) with U replaced by uN yield an asymmetric set that convects each volume fraction with uN .
Set B is asymmetric in the sense that one particular component is governed by structurally different

equations than the other components. At first sight, set B is suitable for the case in which one continuous
component (number N) carries N−1 species of suspended solid particles. The volume fraction equations
of the N − 1 dispersed components all convect with their own velocity, which is consistent with the solid
surface of the particles. The alternative asymmetric example mentioned at the end of the previous
paragraph may be suitable to N − 1 types of compressible bubbles dispersed in an incompressible fluid
(component N).

However, also the sets with symmetric nozzling terms (A and C) allow asymmetry in the sense that
each component has its own thermodynamic equation of state, viscosity and heat-conductivity. Also
specific interactions between two components i and j, detailed in the next section, can be chosen asym-
metric. For example, if component i is dispersed and component j is continuous, the drag force exerted
by these components on each other may depend on the viscosity of component j only. Complications of
this choice arise in cases where two components can be both dispersed and continuous. This is the case
for a gas-liquid flow in which the liquid contains gas bubbles and the gas carries liquid drops. Then both
viscosities effectively influence the drag; a strictly symmetric formulation is possibly the most logical
choice.

It is interesting that if we substract the nozzling term M ′
i from the pressure term ∇φipi, a form of

the pressure term derived from the conventional averaging approach results, for example φi∇P in case
A. In contrast to some averaging theories, the present viscous terms in the momentum equations do
not have nozzling corrections in Mi, because ∇ · φσi satisfies postulates 3 and 4 by itself, while ∇φipi

without nozzling would violate postulates 3 and 4. We stress that the volume averaging method is useful
to interpret the present equations, but that it is not the starting point of the present derivation. We have
chosen to start from the six postulates formulated above rather than exerting conventional averaging
methods as far as possible. The present postulates are consistent with the present forms of pressure and
viscous terms.

Perhaps somewhat unexpected, the harmonic average U =
∑

uj/N occurs in the nozzling terms of
set C, and not the weighted average

Um = (
∑

j

ρjφjuj)/(
∑

j

ρjφj). (41)

Rewriting of the volume fraction equations of set C shows that each φi is convected with U . We therefore
interpret U as the average velocity of the interfaces at a certain location. Consider a two-phase flow
with one stagnant phase (on average) and one moving phase (on average). In this case the velocity of
the interface is unlikely to be proportional to the volume fraction of the moving phase. We therefore
conclude that the average velocity of the interface is probably better approximated by U than by Um.

On the other hand, the volume average velocity of the mixture (not to be confused with the velocity
of the interface) should depend on the volume fractions and material densities. The weighted average
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(41) is an appropriate definition for the mixture velocity, including the mixture modeled by set C. This
is deduced from the summation of the Navier-Stokes equations (6-8) over i. In fact the mixture satisfies
a single system of Navier-Stokes equations (Powers, 2004), with complicated unknown constitutive equa-
tions. One classic modeling strategy, different from the present approach, is to prescribe the constitutive
equations of the mixture, without modeling the evolution equations for the velocities of the separate com-
ponents. A famous example of such a constitutive equation is the Einstein viscosity [12, 11], an expression
for the effective viscosity µeff of a dilute two-phase flow with small particles, µeff = (1 + 5

2
φpart)µfluid.

It follows from an association between the physical dissipation of the suspension and the dissipation of
an imaginary ’effective’ fluid. The increase of the effective viscosity with volume fraction sheds another
light on the present approach and its postulate of the second law of thermodynamics. Imposing the
second law leads to a formula for the total dissipation of the mixture (section 5). The parameters of the
following interaction laws can possibly be validated using the classic results of effective viscosity.

4 The generalized drag law

In this section we specify the irreversible momentum exchange terms M ′′
i , defined by

∑

j M ′′
ij with

M ′′
ij = −M ′′

ji. According to the explanation in section 2, the irreversible exchange M ′′
ij depends on the

velocity difference ui − uj. This immediately guarantees the Galilean invariance of M ′′
ij .

We turn to an operatorial definition and write,

M ′′
ij = −Aij(ui − uj). (42)

The dissipation inequality of kinetic energy will be satisfied if each Aij is positive definite,

∫

w · Aijw dV ≥ 0, w 6= 0. (43)

Section 5 will clarify how the positive definiteness of Aij is useful to prove the entropy law.
To define a positive definite Aij , we consider the standard algebraic drag law supplemented with

suitable second- and third-order derivatives:

Aijw = aij1w −∇ · (aij2Sw)

+∇ · ((aij3∇ · Sw) wT ) − 1

2
w∇ · (aij3∇ · Sw), (44)

where the coefficients may be functions of space and time and should satisfy aijk = ajik ≥ 0 for k ≤ 2
and aij3 = −aji3. The term with aij2 is a linear second-order extension, whereas the last line represents
a nonlinear third-order extension. For the coefficients aijk we propose the proportionality relation,

aijk ∼ φiφj . (45)

The incorporation of the volume fractions ensures postulate 5.
The high-order extensions to the drag law may be interpreted as effects of the subcontinuum scales

on the interaction forces. These scales do not explicitly occur in continuum models (see section 2), but
their effect on the exchange of momentum is included through second-order sink terms and third-order
redistribution terms of the kinetic energy in macroscopic scales. Analysis of the nonlinear third-order
term will show that simultaneous inclusion of the second-order terms can be useful. Rules for the relation
between coefficients aij2 and aij3 will be given for the one-dimensional case (section 7).

Second-order terms in the operator Aij are physically justified because of the existence of the so-
called Faxen forces. The first term in the operator Aij resembles the standard Stokes drag law, which has
extensively been investigated for a single particle in a uniform flow. For a large amount of interacting
particles in a surrounding flow, the assumptions for the Stokes law are not valid anymore. A classic
correction term to include nonuniform effects of the flow on the motion of a single particle is the Faxen
force, which is proportional to the Laplacian of the flow field at the particle location. The ratio between
the Faxen and Stokes term is of the order (d/l)2, where d is the particle diameter and l is a characteristic
fluid length-scale. Due to the occurrence of the Laplacian operator in the Faxen force, l will be the
characteristic length-scale of the fluid dissipation, that is the Kolmogorov length-scale, implying that
the Faxen force may be as large as the Stokes drag, provided the particles and Kolomogorov wavenumber
are sufficiently large.

Whereas the effect of the second-order extension is dissipative, the effect of the third-order terms
is dispersive. This dispersion means that the travelling speed of Fourier wavenumber k of the velocity
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difference w is decreased with aij3w|k|2. In one dimension there is a similarity with the Korteweg-de Vries
equation, which is Burger’s equation plus a third-order derivative. The former equation has been proven
to be useful in the description of many physical phenomena [8], including the behavior of pressure in
gas-liquid columns, related to the motion of interfaces in two-phase flows [32, 5]. The equation regularizes
wave discontinuities and admits soliton solutions.

The operator Aij is positive definite indeed:

∫

w · AijwdV =

∫

[

aij1‖w‖2 + 1

2
aij2|Sw|2 +

∇ · (aij2w · Sw) + ∇ · (1

2
‖w‖2aij3∇ · Sw)

]

dV ≥ 0, (46)

since the integral of the two divergence terms cancels for appropriate boundary conditions. The equality
can be proven by substituting Aij in the left-hand side and subsequently writing out left- and right-hand
side. Use of index notation is convenient. It is evident now that the algebraic and second-order term
dissipate kinetic energy, while the third-order terms only redistribute the kinetic energy.

In section 6 we will show that a third-order extension is more effective in stabilizing short waves than
the second-order term, but quite surprisingly, more effective than a fourth-order term as well. Fourth-
and fifth-order contributions to a positive definite Aij are obtained if the Laplacian operator ∇2 is put
in front of ∇ · S, whereas an example of a contribution with first-order derivatives is found by omitting
∇ ·S in the third-order terms. Other positive definite operators are obtained if Sw is replaced with ∇w
or I∇ · w.

It is remarked that the operator Aij remains positive definite if a term proportional to

(ui − uj) × (∇× (ui + uj)), (47)

is added to Aij(ui−uj). The additional term represents the so-called lift plus rotational force [11, 9, 24].
It does not affect positive definiteness, because its innerproduct with (ui − uj) vanishes.

The added (or virtual) mass force (see the references just mentioned) is the force exerted on a
accelerating particle due to the acceleration of surrounding fluid. A formal proof that this force satisfies
the entropy inequality for all flows seems a hard task, which will not be undertaken in the present
study. Instead, we will verify the inequality for simple flows including virtual mass effects. Consider a
particle, represented by component 1, in a surrounding fluid, represented by component 2. Addition of
the standard expression of virtual mass to the Stokes drag force in dilute flow (φ1 → 0) leads to

M ′′
12 =

φ1ρ1

τp

(u2 − u1) + 1

2
φ1ρ2(D2u2 − D1u1), (48)

where τp is the Stokes response time of the particle. Although the second term may produce kinetic
energy, the entropy law is satisfied for this flow if in the absence of external forces the production by the
second term is not larger than the dissipation by the first term, i.e.

(u1 − u2) · M ′′
12 ≤ 0. (49)

This condition is satisfied in the case of a uniform surrounding flow at least. Dropping viscous terms at
the left-hand side of (7), the momentum equations reduce to:

ρ1D1u1 = M ′′
12/φ1, (50)

ρ2D2u2 = −M ′′
12/φ2. (51)

Pressure gradients vanish, because the flow is uniform and there are no external forces. Since M ′′
12 is

proportional to φ1, we find D2u2 ≪ D1u1 if φ1 → 0 and thus D2u2 can be ignored in equation (48).
Thus D1u1 can simply be solved after substitution of (48) into (50). Subsequently M ′′

12 can be calculated
and contribution (49) to the kinetic energy becomes

−φ1ρ1

τp

(1 − ρ2

2ρ1 + ρ2

)‖u1 − u2‖2, (52)

which is always negative. In this example the energy production reduces the amount of dissipation, but
the total dissipation remains positive.

In practice added mass is often combined with drag, which is a viscous force. However, the first
derivations of the added mass force assumed inviscid flow and neglected drag. If drag is omitted from
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(48), the added mass force can be analyzed for nonuniform surrounding flows. In the following we present
a perturbation analysis in terms of the small variable φ1 to prove that the O(φ1) term in the dissipation
is zero, which means that, at leading order, the added mass effect is reversible in a nonuniform steady
inviscid two-phase flow. The perturbation analysis assumes

ui = ũi + O(φ1), (53)

P = P̃ + O(φ1), (54)

where P = p1 = p2 (set A). Since the nature of the perturbation analysis requires that ũi and P̃ do not
depend on φ1, substitution of (53) in the continuity equations and ρi is constant leads to

∇ · φ1ũ1 = 0, (55)

∇ · ũ2 = 0. (56)

Since M ′′
12 = O(φ1), the momentum equations provide

ρ1D1ũ1 = −∇P̃ + 1

2
ρ2(D2ũ2 − D1ũ1), (57)

ρ2D2ũ2 = −∇P̃ , (58)

which implies
D1ũ1 = ũ1 · ∇ũ1 = −a∇P, (59)

where a = 3rho2/(2ρ1 + ρ2) is constant. The similarity of the last two equations implies ũ1 =
√

aũ2.
Substitution of (53) into the dissipation (u1 − u2) · M ′′

12 shows reversibility of the added mass force at
leading-order:

∫

(ũ1 − ũ2) · 1

2
ρ2(D2ũ2 − D2ũ1)φ1dV =

1

2
(1 −

√
a)(1 − a)

∫

φ1ũ1 · ∇P̃ dV = 0. (60)

The last equality follows from partial integration and equation (55). Consequently, although u1−u2 and
M ′′

ij are respectively O(1) and O(φ1), the integral of the dissipation (u1 −u2) ·M ′′
ij is only O(φ2

1) or less.
In dilute flows φ1 is less than 0.01.

The analysis above concerns two special cases. Thus it is only an indication and no general proof
that after the inclusion of added mass the entropy law of macroscopic scales is still satisfied. If the
total force violated the entropy law, perhaps due to added mass or any other nondissipative force,
one could project the physical expression on a globally dissipative structure of the form of equation
(46) with variable coefficients, using a least-square minimization. A similar procedure is applied in the
succesful dynamic subgrid model [13, 18]. Essentially, this model projects nondissipative expressions of
the Reynolds subgrid stress on an eddy-viscosity. We finish the discussion of the added mass force with
the remark that incorporation of this force into a model may lead to less accurate predictions if the
surrounding flow is turbulent [4].

5 Interaction terms: Irreversibility

In addition to M ′′
ij defined in the previous section, we propose the following irreversible interaction terms:

Fi =
∑

j

F ′′
ij , Ei =

∑

j

E′′
ij , (61)

F ′′
ij = aij4(pi − pj), (62)

E′′
ij = −aij1uij · (ui − uj) − aij2sij : S(ui − uj)

−pijF
′′
ij − aij5TiTj(Ti − Tj)

+∇ · ui ·
[

aij2S(ui − uj)
]

+∇ · ui ·
[

1

2
(ui − uj)aij3∇ · S(ui − uj)

]

, (63)

where uij (pij) are weighted averages of the velocities (pressures) of phases i and j. The tensor sij is
an average of the strain tensors si and sj , where si is the notation for S(ui). The precise form of the
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averages will be defined later on. The two coefficients aij4 and aij5 should be positive. Note that set A
does not contain the terms with F ′′

ij .
The physical interpretation of the five terms in E′′

ij is as follows. The work done by the first two
terms of the generalized drag law causes an energy exchange, which is quantified by the first, second
and fifth term in equation (63). The third term denotes the energy exchange due to the work done by
the pressure when the volume fraction changes. The fourth term in equation (63) accounts for the heat
exchange from component j to i due to macroscopic temperature differences. The last two terms are
energy redistribution terms, already visible in derivation (46). They have the same form as the standard
stress working term in the Navier-Stokes equation, the third term in equation (8). As a consequence
they can be interpreted as augmentations to the standard appearance of σi in the energy equations. It
is remarked that the last two terms in E′′

ij have their origin in the kinetic energy equations. Therefore
they do not appear in the equations of internal energy ei, which is the total minus kinetic energy. This
implies that generalized drag induces locally positive source-terms in the internal energy and entropy
equations, as will be shown below. Thus, generalized drag law will never decrease the global minima of
the internal energies, (or temperatures), which is intuitively consistent with physics.

The physical justification for F ′′
ij is less obvious. These terms represent another model for the closure

problem in multiphase flows, which arises because there are 7N principal unknowns, φi, ρi, pi, Ti and
the three components of ui. However there are only 6N + 1 equations, directly related to physics:
Equation (9), 5N equations represented by (6-8) and N equations of state. In set A the N − 1 missing
equations are provided by the assumption that all pressures are equal. Sets B and C involve N − 1
independent additional equations for the volume fractions, which can also be interpreted as relations
between pressures, due to the definition of F ′′

ij . To clarify this we consider two-component flows and set B
with two incompressible densities (which replace the two equations of state). Then the pressure difference
p1 − p2 is proportional to D1φ1 and, as a consequence of the continuity equation, also proportional to
∇ ·u1. In the case of dispersed flows, p2 is the pressure of the surrounding flow, while p1 becomes larger
than p2 if ∇ · u1 < 0. The model F ′′

12 is consistent with physics, because ∇ · u1 < 0 corresponds to
compression of the dispersed phase, which implies more interparticle collisions and therefore a higher
dispersed pressure.

For simplicity, we have chosen for algebraic relations between F ′′
ij and pi − pj and between E′′

ij and
Ti − Tj . However, irreversibility can also be proven if these relations are replaced by positive definite
operators acting on scalar functions. Boundary terms occurring in the integral of the definition of
positive definiteness have to be treated with care. They will induce additional divergence or other
globally conserved terms in E′′

ij .
In the definition of the averaged quantities, there is freedom in the partition of the entropy produc-

tion to the components i and j which are involved in the specific interaction processes M ′′
ij or F ′′

ij [6].
Considering the momentum exchange process first, the entropy production caused by the irreversible
interaction force between i and j is divided into a fraction buij ≥ 0, attributed to component j and a
fraction buji ≥ 0, attributed to component i. For each pair i 6= j, we have

buij + buji = 1. (64)

A symmetric partition of entropy is achieved if buij = buji = 1

2
, which might be a suitable choice,

in general. However, for specific cases of multicomponent flows with one or more dispersed phases,
asymmetric options can also be defended. Consider the example of one carrier fluid (component N)
embedding N − 1 species of solid dispersed particles. Baer and Nunziato [3], Bdzil et al. [6] and Powers
[22] propose to attribute all the entropy production caused by the drag to the entropy of the fluid, maybe
because the drag deforms the fluid and not the solids. This corresponds to buiN = 1 and buNi = 0 in
the present model. These authors further propose that the pressure differences increase only the entropy
of the solids. In the present example of N − 1 species of solid particles, the N − 1 solid components
also exert forces on each other. The interaction force between two solid components i and j is likely to
increase the entropy of both components, which can be achieved with, with for example the symmetric
choice, buij = 1

2
for i 6= N and j 6= N .

The definitions of the averages needed for the partitions are:

uij = buijui + bujiuj , (65)

pij = bpijpi + bpjipj , (66)

sij = bsijsi + bsjisj , (67)

equal to uji, pji and sji, respectively. The entropy partition coefficients bpij and bsij satisfy contraints
like (64).
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The total energy is conserved; constraint (11) is satisfied by E′′
i , since

∫

(E′′
ij + E′′

ji)dV = 0, (68)

provided there are no fluxes through the boundaries of V . It holds because E′′
ij + E′′

ji reduces to the two
divergence terms in equation (46) for w = ui − uj. Divergence terms express a conservation property
for arbitrarily small volumes. It is possible to formulate a general operatorial formulation that satisfies
both irreversibility and a pointwise constraint E′′

ij = −E′′
ji (Appendix 1).

Next, it will be shown that the exchange laws introduced above always satisfy the entropy law. It is
noted that M ′

i , E′
i and F ′

i do not alter the entropy, by construction. The total entropy increase follows
from expression (16), in which we have to prove the positivity of the last integral. Details of the proof
are found in Appendix 1. We just mention that one step in the derivation is the determination of the
internal energy equation. As an example we give the local increase of the internal energy of component
i due to the algebraic part of the drag-law:

aij1(ui − uij) · (ui − uj) = aij1buji(ui − uj) · (ui − uj) ≥ 0. (69)

The equality can simply be verified by substitution of (65) into the left-hand side. It illustrates that buji

is approximately the fraction of internal energy attributed to ei due to the algebraic part of the drag
force between i and j. The derivation above is similar for the scalar relaxation law dependent on pi −pj,
and the tensor relaxation law dependent on si − sj , which is equal to S(ui − uj). The term with aij3

does not occur in the internal energy equations.
At each location, the increase of entropy due to the interactions between all components turns out

to be positive (Appendix 1):

1

2

∑

i

∑

j

( aij1

Tuij

‖ui − uj‖2 +
aij2

Tsij

1

2
|S(ui − uj)|2)

+
aij4

Tpij

(pi − pj)
2 + aij5(Ti − Tj)

2
)

≥ 0. (70)

Set A does not have the term with aij4. To shorten the notation, equation (70) employs an average
temperature

Tuij =
TiTj

buijTi + bujiTj

, (71)

also equal to Tuji. The definitions of Tpij and Tsij are analogous; ui is replaced by pi or si, while buij is
replaced by entropy partition coefficients bpij or bsij , respectively. These coefficients allow us to control
the entropy production of each interaction process separately.

In the incompressible isothermal limit the entropy law is equivalent to the decay law of the total
kinetic energy K. It is important that such a decay inequality exists for incompressible Navier-Stokes
sets, since the decay inequality of kinetic energy is the corner stone of analytical theories for the Navier-
Stokes equations of a single fluid. Incompressibility and the total conservation of mass further imply
∑

∇ · (φiui) = 0.
Like the coefficients in M ′′

ij , we assume that the coefficients aij4 and aij5 are proportional to φiφj .
The occurrence of φi in aij4 causes each φi to remain between zero and one for finite pi−pj. This can be
shown by solving the volume fraction equations along the appropriate Langrangian path (t, x(t)). The
integration yields

φi(t) = φi(0) exp
(

∫

ri(t
′, x(t′))dt′

)

≥ 0, (72)

where ri represents the right-hand side of the volume fraction equation divided by φi. If each φi is
positive then constraint (9) evidently implies φi ≤ 1.

The present equations for mass, momentum, entropy and volume fraction turn out to be Galilean
invariant. This implies that the equations of internal energy are also Galilean invariant, which is easily
recognized from the Gibbs identities. In the construction of the present Navier-Stokes sets, differences
or derivatives of velocities have consistently been used for the purpose of Galilean invariance. Postulate
6 is therefore valid. Finally, Appendix 2 proves that under certain conditions of the coefficients in the
interaction laws zero Mi, Ei and Fi imply that the flow is in the equilibrium state of postulate 4.
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6 Characteristic velocities

In this section we will show that the sets B and C have real characteristic velocities for general N in
the inviscid limit. Set A will be shown to have real characteristics for appropriate extensions of the drag
law, involving spatial derivatives of at least second order and applied to velocity differences. A rigorous
analytical proof will be given for incompressible two- and three-phase flows. The physical meaning of
well-posedness can be understood in view of its connection with linear stability theory, which will be
clarified in the next section. The analysis in this and the next section will be restricted to one dimension.
Generalizations to more dimensions are straightforward in some cases, but more complicated in other
cases. We remark that one-dimensional descriptions of multiphase flows are not only of theoretical, but
also of practical interest for several applications.

The occurrence of complex characteristics is one of the most foundational problems in theory of multi-
phase flows, since it makes the equations ill-posed. With well-posedness of the linearized equations in the
sense of Hadamard we mean that the equations linearized around constant fields have real characteristic
velocities. They can therefore be solved as an initial boundary value problem, following the characteristic
directions [11, 24]. The characteristic velocities are the roots of a generalized eigenvalue problem. The
characteristic polynomial is the determinant of the matrix R = λÃ− B̃, where Ã is the coefficient matrix
of all first-order time derivatives and B̃ of all first-order spatial derivatives. Algebraic terms do not
influence the characteristics. Well-posedness of the equations requires that the characteristic velocities
are real; complex eigenvalues would imply infinitely growing instabilities. Formally, well-posedness also
requires the set of eigenvectors to be complete, which is definitely true if all eigenvalues are different.

In the construction of matrix R for set A, we combine the nozzling term with the pressure term at
the left-hand side of equation (7). This leads to φi∇P and implies that derivatives of volume fractions
vanish in the (linearized) momentum equations. Unfortunately, the matrix R cannot be written as a
triangular block-matrix. This complicates the determination of the eigenvalues corresponding to set A.

First, we will turn to the more simple analysis of Navier-Stokes sets B and C, without irreversible
terms. Unlike set A, these sets allow the generalized eigenvalue problem to be written as the determinant
of a triangular block-matrix:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

R00 0 0 . . . 0
R01 R11 0 . . . 0
R02 0 R22 . . . 0
...

...
...

...
R0N 0 0 . . . RNN

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (73)

All ∇φi terms in the linearized continuity, momentum and energy equations occur in the matrices R01 to
R0N . These submatrices do not have any effect on the eigenvalues, since the block-structure is triangular.
The roots of the determinant above simply result from the N +1 decoupled eigenvalue problems given by
the matrices on the diagonal, Rii. For i ≥ 1 the problem is equivalent to the standard Euler equations
with the real characteristics ui and ui ± ci where ci is the speed of sound of phase i.

In more detail, the first column of blocks in (73) represent N − 1 independent volume fractions and
each following column i + 1 of blocks represents the density, velocity and pressure of phase i. The first
row of blocks is derived from N−1 independent equations for φi, while row i+1 represents the continuity,
momentum and internal energy equation for phase i. The total dimension of the determinant equals
4N − 1.

The matrix R00 is different for set B and C. For set B this submatrix is also triangular and its N −1
eigenvalues are determined by the diagonal elements, u1 to uN−1. In case of set C the matrix R00 is
diagonal and contains N − 1 times the element λ − U , resulting in the additional characteristic velocity
U with multiplicity N − 1. In case of N = 2, the eigenvector spaces of sets B and C have been proven
to be complete, with exception of a set of velocities with measure zero [26, 3, 6].

We now turn to the most complicated case, set A (single pressure), in which the eigenvalue problem
is non-triangular. The canonical problem of ill-posed equations for multiphase flows concerns this set
in case N = 2 and the two components are incompressible. There is a pair of complex characteristics
if u1 6= u2. The compressible case has the same problem, but the analysis becomes more complicated
there. As reviewed in the Introduction several solutions have been presented in literature to obtain real
characteristics for example to include viscosity for one of the phases [2, 11]. Another solution is the
inclusion of surface tension [25]. The solutions proposed in literature can be interpreted as additions of
higher-order derivatives to the equations [23], second-order in the case of viscosity and third-order in the
case of surface tension.
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Here an alternative approach is considered; the incorporation of high-order spatial derivatives in terms
of velocity differences between the phases. It respects the fact that ill-posedness without regularization
does not occur if the phase velocities are equal. Another advantage is that the regularization term can
simply be interpreted as a modification of the standard drag law.

To prove real characteristics with the approach of derivatives of velocity differences, we chose a fixed
m and add to the incompressible momentum equations terms m-th order derivatives. According to
Appendix 3 the characteristic velocities are the roots of a polynomial of degree N − 1:

Q(λ) =
∑

i

(φi

∏

j 6=i

(λ − uj)) = 0 (74)

The challenge is to prove realness of the roots of Q(λ) for general N .
The characteristic velocity equals φ2u1 + φ1u2 in case N = 2. It is real and hereby the canonical

incompressible problem for N = 2 has now been proven to be well-posed for an arbitrarily small extension
of the drag law with m-th order derivatives and m ≥ 2. It is remarked that the dimension of the
generalized eigenvalue matrix R equals five if m = 2. The four ’missing’ eigenvalues include two infinite
characteristics related to the infinite speed of sound in incompressible flows. The other two eigenvalues
do not occur because the system has become partially parabolic.

Surprisingly, the characteristic velocity for N = 2 is φ2u1+φ1u2 and not φ1u1+φ2u2. In the example
of dilute two-phase flows, this means that the characteristic velocity is approximately the velocity of the
dilute phase. Apparently, the partially hyperbolic character of the equations is related to the dilute
phase in particular. Signals propagating with the velocity of the dilute phase are hardly affected by the
diffusion induced by the second-order extension of the drag.

A rigorous proof of real characteristic velocities for N = 3 is found in Appendix 3. There is an
indication that the polynomial has also real roots for N ≥ 4. This indication is based on solutions
obtained with MATLAB after substitutions of random values for the velocities and volume fractions in
the coefficients of Q(λ), with the constraints φi ≥ 0 and

∑

φi = 1. No counter example with complex
roots was found. The challenge to find a general proof for N ≥ 4 remains.

Numerical evidence suggests that the extended drag law also leads to well-posed equations in set A in
case the phases are compressible. The compressible N = 2 case was investigated substituting arbitrary
values for the velocities, densities, pressures and volume fraction. For each phase we assumed an ideal
gas law, but the Mach numbers and ratios of specific heats were different for each phase. The system
was based on two continuity, two momentum and two internal energy equations, while the dimension of
the system was seven for m = 2. Then the MAPLE-package solved the generalized eigenvalue problem
for several realizations. For each realization, all returned eigenvalues, five in total, were real.

7 Linear stability

This section analyzes the linear stability of a constant profile, focusing on the incompressible isothermal
case in one dimension. We will consider set A in particular; but the linear stability of sets B and C is also
shortly discussed. As argued in the Introduction, the linear instability of a limited range of wavelengths
is related to the physical Kelvin-Helmholtz instability.

Arai [2] showed that, although inclusion of the standard viscous terms leads to well-posedness, all
wavenumbers are amplified if the phases are incompressible. Compressibility was proven stabilize suf-
ficiently short waves. Prosperetti and Jones [23] found that the incompressible two-fluid equations
supplemented with fluid velocity derivatives of arbitrary even order are linearly unstable for u1 6= u2.
They also rewrote several models in terms of third-order derivatives, for example the proposal of sur-
face tension by Ramshaw and Trapp [25], which stabilizes sufficiently high wavenumbers. Here we will
concentrate on the effect of derivatives of velocity differences. It will be shown that derivatives of even
order lead to finite linear growth-rates, in contrast to ill-posedness, which produces instabilities of infinite
growth-rate for k → ∞. It will also appear that, provided the even order is larger than four, the unstable
growth-rate asymptotically goes to zero. The growth-rate can also be exactly zero for sufficiently short
wavelengths, but then the order of derivatives should be odd.

The linear stability is investigated by assuming constant fields plus a perturbation of the form

exp(iωt − ikx). (75)

Here k is the real spatial wavenumber, ω is a complex number and i2 = −1. The imaginary part of
ω is the growth-rate corresponding to k. If it is positive, the perturbation wave is called unstable.
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The issue of well-posedness, treated in the previous section, can be interpreted in the terms of linear
stability of specific waves. More specifically, w = λck is a solution of the linear stability problem for
each characteristic velocity λc and spatial wavenumber k. Ill-posedness of the equations (complex λc)
implies that for each k the perturbation is unstable for plus or minus k.

For the incompressible equations of set A, supplied with the generalized drag law, the solutions for
ω in the linear stability analysis are the roots of a determinant of dimension 2N ,

∣

∣

∣

∣

R11 R12 0
0 R22 R23

∣

∣

∣

∣

. (76)

Appendix 4 specifies the matrices Rij for N = 3.
In the following we analyze the case N = 2 in more detail. Then determinant (76) is of dimension

four and after some algebra the eigenvalue problem expressed in λ = w/k can be written as:

−aλ2 + (b − q)λ + (qû − c) = 0, (77)

where û = φ2u1 + φ1u2 is precisely the characteristic velocity from the previous section, while a, b and
c are positive real coefficients, specified in Appendix 4. These coefficients are independent of the spatial
wavenumber k. The coefficient q, proportional to km−1, represents the interaction force. The coefficient
is complex for even and real for odd m, where m is the order of the derivative in the generalized drag
law.

In case of a second-order drag extension (m = 2), there are two complex roots of equation (77).
The reader is referred to Appendix 4 for more details. The real parts of the roots contain û and
represent velocities of travelling waves. One of the imaginary parts corresponds to a negative growth-
rate proportional to −k2, obviously reflecting the dissipative character of the second-order derivative of
the velocity difference. The other imaginary part vanishes if u1 = u2. Otherwise, it is of indefinite sign
and may therefore represent a potential instability. However, the unstable growth-rate would remain
constant for k → ∞, in contrast to the infinitely large growth-rate for ill-posed problems. In case of
fourth-order derivatives the growth-rate of the potential instability converges to zero if k → ∞.

However, not only fourth-order, also second-order derivatives may be able to produce an asymptot-
ically zero maximum growth-rate for k → ∞. For this purpose the coefficient of the drag derivative, d,
should be allowed to approach infinity for k → ∞. For example, assume aij2 = c2ρij l

2|∂w/∂x|, where
c1 is a positive coefficient, ρij is an average density and l is a length-scale, for example the length-scale
of an averaging operator or the particle diameter in particulate flows. This expression is analogous
to Prandtl’s mixing length model or the three-dimensional Smagorinsky model frequently applied in
large-eddy simulation. Here the model is applied to the velocity difference, w. It was remarked in the
Introduction that for particle-fluid flows the physical instabilities may continue to the scale of a few
times the particle diameter. This scale might be smaller than the smallest length-scale in a numerical
simulation, an additional reason to use a nonlinear aij2, taking subgrid contributions to the drag-force
into account.

In section 4 we also proposed a nonlinear third-order extension to the drag law. In one dimension
and for constant aij3, the nonlinear terms in equation (44) reduce to

aij3

(

1

2
w

∂3w

∂x3
+

∂w

∂x

∂2w

∂x2

)

(78)

The second term of equation (78) vanishes in the present linearized problem, because it is the product
of first and second-order derivatives. This expression shows that the linearized equations will contain a
third-order derivative multiplied with w, the velocity difference of the constant fields. It is evident that
the third-order term is not active if w equals zero (ui = uj). This is not a problem because instabilities
can occur only in the case of unequal velocities. In case w is not zero, the third-order derivative
entirely neutralizes all instabilities beyond a certain wavenumber (proven in Appendix 4). Apparently,
dispersion of the velocity difference is quite effective to stabilize short waves in multicomponent flows.
The success of the Korteweg-de Vries equation in predicting wave phenomena, could indicate that the
present regularizing third-order term also leads to a more physical propagation of waves, in particular
waves caused by velocity differences.

Although the second term in equation (78) does not play a role in the linear theory, a remark on this
term added, because it contains a possibly negative diffusion coefficient ∂w/∂x. A suitable combination
of the second- and nonlinear third-order derivative terms, for example aij3 = c3ρij l

2 with |c3| < c2

guarantees a locally positive diffusion.
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The linear stability results above are probably also true for larger N . We investigated the incom-
pressible cases N = 3 and N = 4, by substituting arbitrary numerical values for the unperturbed state
and assuming

qij = φiφj
√

ρiρj q. (79)

The determinants of dimensions 2N were calculated using MAPLE, where care had to be taken to control
the machine precision errors. Then the roots of the determinant were determined for several values of
q. The imaginary parts of the growth-rates were negative for sufficiently high real values of q, showing
short wavelength stability for odd m ≥ 3.

So far, we considered the linear stability of set A. Conclusions regarding the incompressible stability
of sets B and C can be drawn by interpretation of the existing literature for N = 2. If ρi is constant,
Diφi = −φi∇ · ui. In one dimension this implies that the pressure differences in set B are equivalent to
the inclusion of standard viscous terms in N −1 momentum equations. However, standard viscosity does
not stabilize sufficiently short waves, unless the phases are compressible [2]. In the present terminology,
standard viscosity means that R22 becomes a diagonal matrix with diagonal elements λ̃j − ikµj . Repe-
tition of the analysis above for this case leads to a finite positive growth-rate for k → ∞. Apparently,
the inclusion of multiple pressures does not cause short-wave stability for the incompressible variant of
set B. We mentioned before that the treatment of pressures in set C for N = 2 reduces to the Ransom
and Hicks [26] approach, which allows short-wave instabilities in the incompressible case [23]. Note that
we performed a linear stability analysis. Due to nonlinearity, linear instabilities may saturate after some
time, in particular if the growth-rate is finite and the equations satisfy an entropy inequality, since that
inequality implies an upperbound for the total kinetic energy in the incompressible case.

8 External forces, mass exchange and pressure jumps

In this section we address a few additional effects, such as body forces (for example gravity), mass
exchange and pressure jumps. We propose a strictly irreversible relaxation form for the interfacial mass
exchange. This relaxation term will be expressed in the Gibbs free energy [6],

zi = ei +
pi

ρi

− ηiTi. (80)

The physical interpretation is as follows: component i gains mass at the expense of component j if
component i has a larger Gibbs free energy than component j. The entropy increases during this exchange
process. Examples of mass exchange are combustion or other chemical reactions in technological flows,
or the evaporation of water and melting of ice in geophysical flows.

Considering body forces and mass exchange first, the following terms are added to the right-hand
sides of the continuity, momentum and energy equations,

Gi =
∑

j

G′′
ij , (81)

M̃i = ρiφigi +
∑

j

1

2
(ui + uj)G

′′
ij , (82)

Ẽi = ρiφigi · ui +
∑

j

(eij + 1

2
ui · uj + yij)G

′′
ij , (83)

respectively. Here gi represents the accelaration vector of the body force. The mass exchange between
phases i and j is denoted with G′′

ij , while

G′′
ij = −aij6(zi − zj), (84)

eij = ei + ej , (85)

yij = bzij(zi − eij) + bzji(zj − eij), (86)

A positive coefficient aij6 proportional to φiφj is assumed and bzij denotes the entropy partition coeffi-
cient corresponding to the mass exchange process (similar to buij in section 5). Summation over i yields
zero for the three interaction terms (81-83), because G′′

ij = −G′′
ji, eij = eji and yij = yji.

As a consequence, the entropy contribution due to mass exchange equals:

∑

i

∫

1

Ti

(Ẽi − ui · M̃i + (1

2
ui · ui − zi)Gi)dV
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=
∑

i

∑

j

∫

1

Ti

(yij + ei + ej − zi)G
′′
ijdV

= 1

2

∑

i

∑

j

aij6

Tzij

(zi − zj)
2 ≥ 0. (87)

To obtain the third line, the definitions of yij , G′′
ij have been substituted into the expression on the

second line, whereas Tzij is defined like (71). Increase of entropy can also be proven for a positive
definite operatorial formulation of the mass exchange law.

It is remarkable that the present irreversible mass exchange law is expressed in a difference of variables
of the exchanging phases. To the author’s knowledge existing irreversible models of two-phase mass
exchange can not be expressed as a relaxation term dependent on a thermodynamic variable difference
[6, 22]. That such a irreversible form does exist improves the similarity between the modeling of mass
exchange and the irreversible momentum and energy exchange processes, which were also based on
positive definite relaxation operators.

Pressure jumps can be included through pressure differences. Below we present an example, suitable
for sets B and C, inspired by the two-phase formulation by Baer and Nunziato [3], Bdzil [6] and Powers
[22]. The pressure relaxation operators Cij(pi−pj) in the equations for the volume fractions are replaced
by

Cij(pi − βi + βj − pj), (88)

where βi represents a configurational stress or surface tension for component i. The references cited
above give more information about the thermodynamic foundation of βi and its specific form in the
context of detonation theory. The term

− βi

ρ2
i φi

Diφi (89)

is added to the right-hand side of the thermodynamic Gibbs identity (14). The pressures pi and pj in
the definition of the interfacial quantity pij have to be replaced by pi − βi and pj − βj , respectively.
After these modifications positive definite Cij can again be proven to increase the entropy. The natural
redefinition of the state of equilibrium (postulate 4) would prescribe equal pi−βi for each i. Substitution
of the state of equilibrium in the momentum equation prescribes that the momentum equation requires
an additional term −∇(βiφi) 6= 0 to satisfy postulate 4. This term represents the surface tension force.
The entropy law is not violated if the formulation of this term is in terms of Korteweg stresses (see [1]).

9 Conclusions

We have formulated three well-posed Navier-Stokes sets A−C, which for arbitrary N have been proven
to satisfy the second-law of thermodynamics. In the derivation of these sets we have been guided by
six plausible postulates. The Navier-Stokes sets can be regarded as macroscopic models for general
multiphase flows consisting of N different components. As far as the author knows, this is the first
general macroscopic flow theory which satisfies the second law of thermodynamics in the sense that
the weighted sum of the individual entropies can analytically be shown to increase for arbitrary N .
Appropriate averages of velocities and pressures have been considered to control the distribution of
entropy production among the phases. To satisfy the entropy law, the interaction terms do not have to
be algebraic. Irreversibility can be proven for interaction terms expressed in positive definite operators,
following the example of the operatorial drag law proposed in the present paper. We also found an
entropy increasing mass exchange law, dependent on Gibbs free energy differences.

The Navier-Stokes sets A−C represent the case of single pressure, the case of multiple pressures with
asymmetric equations, and the case of multiple pressures with symmetric equations, respectively. If we
take N = 2, we recover standard two-phase formulations; set A becomes equivalent to the classic single
pressure formulation, set B to the Baer and Nunziato approach, and set C to the Ransom and Hicks
approach. It is remarked that the three sets do not necessarily exclude each other. For example, one
may adopt equal pressures for N1 components, where N1 < N . There are more possible combinations
which may enlarge the possibility to apply the present theoretical results to more specialistic scientific
areas.

An extension of the drag law with high-order derivatives leads to well-posedness of the otherwise ill-
posed set with a single pressure. For the incompressible one-dimensional case the characteristic velocities
turn out to be roots of the polynomial of the degree N − 1 expressed by equation (74). Realness of roots
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has been proven for two- and three-phase flows. There are indications (no rigorous proofs yet) that the
roots are also real for N ≥ 4.

We conclude that well-posedness can be achieved by the generalized drag law. For second-order
derivatives the drag extension is part of the physical friction forces caused by the velocity difference
between two components, somewhat similar to the Faxen force. It was known that well-posedness can
be achieved by including a nonzero standard viscous stress, but this term is not an interaction force and
acts everywhere in the flow. Using second-order derivatives the ill-posed infinite growth-rate for k → ∞
becomes finite. For fourth-order derivatives, the growth-rate of the instability converges to zero for
k → ∞. Third-order derivatives of the velocity difference achieve even more; they entirely neutralize the
instabilities of sufficiently short waves. The regularizing behavior of third-order derivatives is possibly
related to the regularity of solutions of the Korteweg-de Vries equation.
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Appendix 1: Entropy production

Entropy evolution equations can be derived in five steps: (a) derive the evolution equation for 1

2
ρiφiui·

ui by multiplication of (7) with ui, (b) subtract this equation from (8) to obtain the evolution equation
for ρiφiei, (c) derive Diei, (d) apply the Gibbs identity to find Diηi, and (e) derive the evolution equation
for ρiφiηi. The following identity for a scalar field f is frequently used,

ρiφiDif + fGi =
∂ρiφif

∂t
+ ∇ · (ρiφifui), (90)

where Gi denotes the mass exchange term of component i, equal to the right-hand side of the continuity
equation (6), which in general is not zero (section 8). The steps (a-c) lead to the internal energy equations:

ρiφiDiei = (1

2
ui · ui − ei)Gi + ui · Mi + Ei

+pi∇ · φiui + σi : ∇ui −∇φiqi. (91)

The continuity equations are rewritten:

φiDiρi = −ρi(Diφi + ∇ · φiui) + Gi. (92)

Substitution of the internal energy equation and the rewritten continuity equation into the Gibbs identity
(14) yields Diηi (step (d)). The evolution equation for ρiφiηi is finally obtained by the application of
(90), which leads to a term ηiGi at the right-hand side of the final entropy equations. Summation and
partial integration and substitution of Gi = 0 delivers the entropy production formulated by equation
(16), whereas the terms expressed in Gi lead to the entropy production due to mass exchange, equation
(87).

To clarify the entropy production (70) and (87) we first take the entropy gained by component i due
to the algebraic part of the momentum exchange process between i and j; we divide equation (69) by
Ti. Next, we add the entropy production gained by the component j due to the same process is (replace
buji with buij). The sum is equal to the first term in (70).

An alternative set of irreversible interaction laws is obtained if M ′′
ij , F ′′

ij and G′′
ij are multiplied with

a suitable average temperature, for example Tuij . It is logical to use drag coefficients aijk reversely
proportional to Tuij , then. Note that an important physical parameter in models of interaction forces,
the viscosity, is in general a function of temperature as well. After multiplication of M ′′

ij with Tuij , the
effect of generalized drag on E′′

ij can now be written as a very compact formula, −uij ·M ′′
ij , which implies

strict locality of the total energy exchange terms, E′′
ij = −E′′

ji. Again, positive definite exchange laws
guarantee a global increase of the total entropy. However, in contrast to E′′

ij in section 5, the compact
expression of E′′

ij does not always induce locally positive changes of internal energies, which might lead
to locally unphysical behavior of temperatures.
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Appendix 2: Equilibrium

In this appendix, we investigate under which conditions zero values of the irreversible parts of the
interaction terms imply the flow to be in the equilibrium state of postulate 4. Let us focus on the drag
law and the state of equal velocities. Since Aij = Aji and Aii is irrelevant, the set of equations for
N components contains 1

2
N(N − 1) independent operators Aij . The equilibrium state of velocities, in

which case all velocities are the same, implies zero total drag M ′′
i for each component i. It appears that

the nontrivial reverse statement is also true in most cases; zero total drag implies that all velocities are
equal. To prove this we have to consider the system of N equations M ′′

i = 0 with the N velocities as
unknowns. Solutions of N equal velocities are the only solutions precisely then if the rank of the system
equals N − 1 (in the case of one spatial dimension). This seems to be true if no phase is isolated; for
each component i there is at least one nonzero Aij for some j.

We give a rigorous proof that the rank equals N − 1 indeed for the case of nonzero algebraic drag
laws, which means that each Aij is a constant and nonzero if i 6= j. The coefficient matrix M for the
problem M ′′

i = 0 is an N2 matrix with elements mij = −Aij if i 6= j, whereas

mii =
∑

j 6=i

Aij . (93)

The matrix M is positive semidefinite, since it is symmetric and all eigenvalues are nonnegative, shown
by standard Gershgorin theory. Since the state of equal velocities is a solution of Mu = 0, we know that
the rank of M equals N − 1 at most. Thus λ = 0 is a root of the characteristic polynomial of M . The
rank of M is precisely N − 1 if the algebraic multiplicity of the root λ = 0 equals one, or equivalently,
the coefficient m1 of the term m1λ in the characteristic polynomial is nonzero. This coefficient is given
by

m1 = −
∑

i

det(Ji), (94)

where Ji is the principal minor of M , obtained by omitting both column and row i. Resorting to
Gershgorin theory again, we find that all eigenvalues of Mi are strictly positive. Thus det(Ji) is strictly
positive for each i. As a result m1 6= 0, which finishes the proof. The conditions for this result can be
enlarged, but we do not elaborate on this.

Appendix 3: Well-posedness

We prove real characteristics for set A in case the incompressible momentum equations are extended
with m-the order derivatives of velocity derivatives. These additional terms have the form ∂τm−1,j/∂x,
where

τ1,j =
∂

∂x
(uj+1 − uj), j < N − 1, (95)

τi,j =
∂

∂x
τi−1,j , i < m − 1, j < N − 1. (96)

In this way the higher-order terms can be considered as first-order derivatives of new variables, like Arai
[2] did for the standard viscosity.

The incompressible, inviscid generalized eigenvalue problem with extended drag law takes the general
form

∣

∣

∣

∣

∣

∣

∣

∣

R11 R12 0 0
0 R22 R23 0
0 R32 0 0
0 0 0 R44

∣

∣

∣

∣

∣

∣

∣

∣

. (97)

The first column corresponds to the derivatives of φ1 to φN−1, the second column to the derivatives of
u1 to uN , the third column to the derivatives of p and τm−1,j and the final column to the derivatives
of τi,j with i ≤ m − 2. The first row corresponds to the N continuity equations, the second row to the
momentum equations the third row to the equations for τ1,j and the last row to the equations for τi,j

with i ≥ 2. Note that the last row and column vanish if m = 2. For larger m the matrix R44 is simply
the identity matrix of dimension m − 2, hence the order of m does not influence the analysis, provided
m ≥ 2.
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In the following we give the matrices Rij for N = 3 and then it will be sufficiently clear which forms
they have for other values of N . The matrices R11 and R12 in the continuity equations are





λ − u1 0
0 λ − u2

u3 − λ u3 − λ



 ,





−φ1 0 0
0 −φ2 0
0 0 −φ3



 , (98)

respectively. The momentum equations contains R22 and R23,





λ̃1 0 0

0 λ̃2 0

0 0 λ̃3



 ,





−φ1 −a12 − a13 −a13

−φ2 a12 −a23

−φ3 a23 a13 + a23



 , (99)

respectively, where λ̃i = ρi(λ − ui) and aij is a nonzero drag law coefficient in front of a derivative of
order m. Finally, R32 equals

(

−1 1 0
0 −1 1

)

, (100)

corresponding to the equations for τ1,j .
The general determinant (97) can be calculated for arbitrary N , by starting its development with

R32. The resulting characteristic equation reads

Q(λ)|R23| = 0. (101)

The determinant |R23| does not depend on λ and

Q(λ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ − u1 0 . . . −φ1

0 λ − u2 . . . −φ2

...
...

...
uN − λ uN − λ . . . −φN

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (102)

We rewrite
Q(λ) =

∑

i

(φi

∏

j 6=i

(λ − uj)). (103)

The determinant |R23| should not vanish. For two components |R23| equals −a12, which may be arbi-
trarily small, but nonzero. For N = 3 the determinant |R23| equals

−(a12a23 + a13a23 + a12a13), (104)

which is unequal to zero if the three interaction coefficients aij have the same sign and at least two of
them are nonzero.

The characteristic velocities are the roots of Q(λ), a polynomial of degree N − 1. The challenge
is to prove that these roots are real for general N . The proof is trivial for N = 2 and to prove real
characteristics for N = 3 we rewrite Q(λ) as λ2 + bλ + c with

b = −((1 − φ1)u1 + (1 − φ2)u2 + (1 − φ3)u3), (105)

c = φ1u2u3 + φ2u1u3 + φ3u1u2, (106)

where we used
∑

φi = 1. The roots are real if D = b2 − 4c is nonnegative. To prove that this is always
true we employ the Galilean invariance of the original problem; without loss of generality we may assume
that u1 = 0. The discriminant can then be written as

D = v2
2 + v2

3 + (4ξ23 − 2)v2v3, (107)

vi = (1 − φi)ui, (108)

ξij =
φiφj

(1 − φ1)(1 − φj)
. (109)

Since (1 − φi) ≥ φj we find that ξij is bounded between zero and one, hence

D ≥ (|v2| − |v3|)2 ≥ 0. (110)
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This finishes the proof of the realness of characteristics for N = 3.

Appendix 4: Linear stability

This appendix contains the mathematical specifications referred to in section 7. First the matrices
Rij in definition (76) are specified for N = 3. Substituting λ = ω/k into expression (98) provides R11

and R12, whereas R22 equals





λ̃ − q12 − q13 q12 q13

q12 λ̃ − q12 − q23 q23

q13 q23 λ̃ − q13 − q23



 , (111)

where λ̃ = φiρi(λ − ui), and R23 equals




−φ1

−φ2

−φ3



 . (112)

The constants qij are complex for even m and real for odd m. Algebraic source terms correspond to
complex values of qij , independent of the wavenumber k.

Secondly, we specify the coefficients of the characteristic equation (77):

a = φ2
2φ1ρ1 + φ2

1φ2ρ2, (113)

b = 2u1φ
2
2φ1ρ1 + 2u2φ

2
1φ2ρ2, (114)

c = u2
1φ

2
2φ1ρ1 + u2

2φ
2
1φ2ρ2. (115)

Thirdly, investigating the discrimant of polynomial (77), it is simply recognized that both roots are
real in case q is real and |q| is sufficiently high. For third order derivatives q can be written as q = −k2d,
where d is the nonzero factor in front of the drag derivative. Consequently, the imaginary part of ω is
zero and the wave is stable, provided k is sufficiently high. In fact this result extends to all odd m ≥ 3.

Analyzing even orders of derivatives, we first consider m = 2. In that case q is complex and can be
written as q = ikd, where d is the nonzero factor in front of the drag derivative. It can be verified by
substitution that the following complex numbers are solutions of the quadratic polynomial (77) in the
asymptotic limit k → ∞:

λ1 ∼ b

a
− û − ik

d

a
, (116)

λ2 ∼ û +
i

kd
(aû2 − bû + c) (117)

For positive values of d and sufficiently high k, the maximum growth-rate approaches the imaginary part
of λ2. It vanishes if u1 = u2, but otherwise it may be positive. Since ω = λk and Im(λ2) ∼ 1/k, a
potential instability leads to a constant growth-rate for k → ∞. In case of fourth-order derivatives, k
in the two roots should be replaced by −k3 and d should be negative. Then the unstable growth-rate is
not only finite, but converges to zero if k → ∞. However, the exactly neutralizing behavior encountered
for third-order derivatives is not reached.
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