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equation (7), we consider the evolution of twice the mean flow kinetic energy, given by

0 - 0 e e ~ o, oty

— (P y) = —(—pu itz + 262U, — 2puusuy) + 2puu — 26 8

a{(pll) 8x2( puu s 12U1 P121) P126 126x2 (8)
where @, is the viscous stress tensor. After integration the conservative terms vanish
and hence the growth rate satisfies

’ 2 o a~ a~
= o || (P ) e [ (mag) o). ©

The first integral is the integrated turbulent production term, whereas the second
integral represents the molecular dissipation of the mean flow. In the turbulent
regime the latter can be neglected compared to the former and, consequently, the
expression for the growth rate reduces to

, 2 —— 0uy
P) =—mU—)2/ (pu”uZa )dxz (10)

Thus, the growth rate of time-developing turbulent mixing layers is proportional to
the integrated turbulent production.

The relation between growth rate and production can be extended to spatial mixing
layers under certain conditions. The convection speed in a spatial mixing layer is
denoted by U, (equal to %(Ul + U,) for equal free-stream temperatures). We apply
the following transformation: x] = x; — U.t, x; = X3, x; = x3 and t* = t. The Navier—
Stokes equations are invariant under such a Galilean transformation. In this new
frame of reference the spatial momentum thickness &(x;) can be written as 6"(U.t")
and, consequently, the spatial growth rate satisfies

do 1 do”
_ == 11
dx;y U, dt ( )
Equation (10) can be used for dé*/dt* if we assume that terms with ¢/dx] are much

smaller than terms with d/dx5. This provides a relation between growth rate and
integrated turbulent production for self-similar spatial mixing layers.

3.2. The integrated Reynolds stress transport equations

To exploit this connection between growth rate and integrated production we consider
the x,-integrated Reynolds stress transport equations. The Reynolds stress equations
for compressible flow in their general form are given by Blaisdell, Mansour &
Reynolds (1991). The terms in divergence form vanish after integration, hence the
equation for the (if)-component of the integrated Reynolds stress becomes

—/pu uidxy = Py + II;; — ey, (12)
where
ou ou;
Py =- / P =)+ = ) dxs, (13)
0x, 772 9%,
= i 4
Hl] /p (ax] + 8X,)dx2, (1 )

ou' ou’
€jj = / (O'ika—)i + O'jkﬁ) dx,, (15)
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which represent the integrated production, pressure—strain and dissipation tensors,
respectively. Note that equation (10) implies

Pii = p(AU)*Y. (16)

In a self-similar mixing layer the growth rate and, consequently, the integrated
production is constant. Therefore, like Rogers & Moser (1994), we argue that in a
self-similar stage the terms of equation (12) are independent of time and scale with
p«(AU). Self-similarity also implies that the values of the Reynolds stress in the
centre of the mixing layer have reached a constant level, whereas the width of the
profiles grows with 8. Therefore, we define

1 [—
R; = 5 /pu’i/u}dxg, 7
which will be independent of time in the self-similar stage and will scale with p,,(AU)*.
Hence, the Reynolds stress equations reduce to an algebraic system

(s,Rij:Pij+Hij‘€ij~ (18)

The values for the tensors R;;, Pi, II;; and ¢; have been plotted against Mach
number in figure 3. Since we do not have exact self-similarity over time, the
values in figure 3 have been averaged over a number of samples in the region with
approximately linear growth of the momentum thickness (figure 1). The contributions
of the (1,3) and (2,3) components of the Reynolds stress have not been plotted
since they are negligible compared to the other components. Figure 3(a) shows that
the anisotropy of the diagonal Reynolds stresses increases with Mach number. The
Reynolds shear stress Ry is directly coupled to the growth rate through Py (see (10))
and decreases with Mach number. Its anisotropy (R;2/R,,) is almost constant with
increasing Mach number. From figure 3(b), comparison of the production term Py,
with the growth rates obtained from figure 1 illustrates equation {16): P;; = 46'. The
production terms Py and P;; are zero according to figure 3(b), which is expected
since the only significant mean velocity derivative, ¢u;/dx,, does not appear in these
terms. Retaining only the significant terms, the system given by (18) and (16) reduces
to

'Ry = pos(AUYO'+ Iy — €y, (19)
'Ry = Iy — ep, (20)
O'Ry; = 1133 — €33, (21)
0Rp= P+ IIjp—ep (22)

The pressure—strain term IT,; is negative, while ITy» and IT;; are positive. Thus,
pressure-strain acts to redistribute energy from the streamwise into the normal and
spanwise fluctuations. We remark that the pressure-dilatation 1Ty is approximately
zero, even at the highest M. i

The dissipation component €;; does not decrease as much as the other two com-
ponents as the Mach number is increased. Thus, the anisotropy of the diagonal
dissipation components increases at higher Mach numbers. The diagonal components
of the dissipation tensor are considerably larger than ¢,, although the latter is not
zero. Tennekes & Lumley (1972) argue that for very high Reynolds numbers the
turbulence is isotropic at small scales, which would imply isotropic dissipation. Our
simulations have all been conducted at low Reynolds numbers, and it may be that
the turbulent cascade is not over a sufficiently wide range of scales to set up isotropy
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FigUure 3. Integrated turbulence statistics: (a) Reynolds stress R;;, (b) production Py, (c) pres-
sure-strain f1; and (d) dissipation e;. Components are denoted with triangles (11), crosses (22),
diamonds (33) and squares (12).

in the dissipation. However, a tendency to isotropy of the small scales is observed in
the simulations, since the anisotropy of the diagonal dissipation is smaller than that
of the diagonal Reynolds stresses.

Dilatation dissipation and pressure—dilatation are of interest because of their pos-
sible use in explaining compressibility effects. Total dissipation e can be split as
€ = €, + €4, where ¢; is a solenoidal part and ¢, is a dilatational part. An integrated
form of the dilatational dissipation is

4 p oul ou}
= [ -— —dx,.
3 Re 0x; 0x;

€4 (23)
We consider the highest Mach number case M = 1.2 and in figure 4 show the
integrated total dissipation, dilatation dissipation and pressure—dilatation as functions
of time. The dilatational part of the dissipation is very small even in the stages of
the simulation which contain eddy shocklets. The pressure—dilatation is somewhat
larger, but it changes sign a number of times and is also not significant compared
to the total dissipation. These two dilatational terms are even smaller in the cases
with lower convective Mach number which do not contain eddy shocklets. Eddy
shocklets do increase the dilatational terms, but compared to the total dissipation
their contributions are too small to explain the growth rate reduction. The production
and pressure-strain rate terms are much more affected by compressibility than the
dissipation and, consequently, the reduced growth rate must be explained from these
terms.

The production and pressure-strain terms in the Rj; and Ry, equations have
opposite signs. However, the reduced growth rate is not explained by an increase in
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FIGURE 4. Comparison of the magnitudes of total dissipation (solid line) with dilatation—dissipation
{dashed linej and pressure—dilatation {dotted line} during the simulation at M = 1.2.

the ratio of pressure-strain and production in these equations. Both production and
pressure—strain terms reduce strongly with Mach number. The ratio also reduces, but
only slightly. In the following section we explain the growth rate reduction from the
diagonal Reynolds stress equations, since the growth rate was found to be directly
connected to the production term in one of these equations.

4. Modelling the effect of compressibility

In this section we identify the key terms contributing to the reduced growth rate and
build a complete model for the integrated diagonal Reynolds stress equations using
a deterministic model for pressure fluctuations and models for turbulence anisotropy.
In §4.1 we argue that the mixing layer growth rate would be proportional to the
rapid pressure-strain term if the turbulence were isotropic (1.e. Ry = Ry = Ras).
Furthermore, the rapid pressure—strain term is expressed in the pressure extrema. In
§4.2, we model the pressure extrema as functions of the convective Mach number,
using a compressible vortex model and the sonic-eddy concept. Thus, the isotropic
model is completed, which gives a good qualitative prediction of the growth rate
reduction. However, it predicts too low growth rates at high Mach numbers. In
§4.3 we correct the isotropic model taking anisotropy effects into account to obtain a
better quantitative prediction of the growth rate reduction.

4.1. The significance of pressure—strain

In the following subsections we explain the reduced growth rate of the mixing layer by
consideration of a necessary adjustment in pressure fluctuations as the Mach number
is increased. A reformulation in terms of anisotropy is useful. We define the Reynolds
stress anisotropy as

R;; — 3koy;
bij = —2 T ’ (24)
and the dissipation anisotropy as
i 3 51’
ey = €ij — 3€0ij (25)
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FIGURE 5. The growth rate 6’ obtained from equation (26) (triangles), equation (27) (crosses) and
equation (28) (diamonds) compared to the growth rate obtained from figure 1 (squares).

where k = R, /2 and € = €,,/2 are respectively the turbulence kinetic energy and
dissipation. With the assumption that we can neglect the pressure—dilatation term in
the kinetic energy equation, the integrated equations for the diagonal terms reduce to

8'(2biik — 2p(AUY) = I} + I — 2eye, (26)
8'(2bnk + 1po(AUY) = I3, + ITX — 2eye, (27)
8'(2bysk + Lpoo(AUY) = I35 + I35 — 2exse, (28)

where we have included a split of the pressure-strain into a slow part II° and a
rapid part ITR (see e.g. Speziale, Sarkar & Gatski 1991). In incompressible flow
the slow part is associated with the process of return to isotropy, while the rapid
part is associated with the mean strain rate. Extension to compressible flow is an
area of current research. The recent work of Ristorcelli (1995) is an example of the
distinction between slow and rapid parts in compressible flow. Another approach is
to consider the split to be between a linear part (predictable in principle by rapid
distortion theory) and a nonlinear part (see e.g. Cambon, Coleman & Mansour 1993).
In this paper the part of pressure—strain responsible for the return to isotropy is
simply defined as the slow part, whereas the remainder is called the rapid part.

Equations (26) to (28) can be used to measure the deviation from self-similarity of
the simulation data. In figure 5 the growth rates 6’ versus M calculated from these
equations have been plotted together with the growth rates obtained from figure 1.
The maximum difference between ¢’ obtained from equation (26) and &’ from figure
1 is 9%, whereas the maximum differences are 10% for equation (27) and 16%
for equation (28). These deviations indicate that the simulated flows are not fully
self-similar. The deviation is sufficiently small to permit the use of the simulation
data (in particular for equation (26), the main basis of our analysis).

The diagonal-pressure strain terms mainly determine the growth rate as is shown
by the relative magnitude of the terms in equations (26) to (28). The Reynolds
stress anisotropy term 2by;k is usually small compared to %poo(AU)z. Compared to
pressure—strain the dissipation anisotropy term is not large either and is assumed to
vanish for very high Reynolds number (Tennekes & Lumley 1972). This results in
an approximate proportionality between the growth rate and the diagonal pressure—
strain components, which is confirmed by the data (figure 3). If the turbulence were
isotropic the diagonal components of b;; and H;j would vanish and equations (26) to
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FIGURE 6. Maximum and minimum pressures relative to free-stream pressure during simulations at
M = 02 (solid), 0.6 (dotted), 0.8 (dashed) and 1.2 (chain dotted), showing the large reduction of
pressure depressions as Mach number is increased.

(28) would reduce to an exact proportionality between the rapid pressure-strain term
and the mixing layer growth rate:

o 3 R

0 = Zp@(AUVH“' (29)
The relation between the diagonal components of pressure-strain would be I1§ =
nE = —%H .

It is proposed that the main effect of compressibility comes from modified pressure
fluctuations. That the pressure fluctuation must change is evident when one considers
that the typical pressure fluctuations in incompressible flow, normalized by pw(%AU )
would lead to negative pressures in high-Mach-number flow, since the free-stream
pressure drops relative to p:}o(%AU)2 as 1/(yM?). This is illustrated by the simulation
data in figure 6, where the relative pressure extrema p' = p,. — p and —p~ =
~(Px — pmin) are plotted against time. The reference pressure p.. equals 16.85, 1.98,
1.12 and 0.50 for the different Mach numbers respectively. A large drop in p~ is
observed. Since the values for p~ in the nearly incompressible case (M = 0.2) are
considerably larger than p, at M = 1.2, p~ must decrease with increasing Mach
number in order to keep the minimum pressure positive.

The reduced pressure fluctuations cause the total pressure-strain terms to reduce
and the rapid components in particular. Thus, we propose to model I1§¥ as

I = p"(M)(ITf =0 (30)

where p*(M) contains the effect of reduced pressure fluctuations. In the isotropic
approximation the mixing layer growth rate would be proportional to p*(M).
To estimate p"(M) we assume that

p(M) = M (31)
(pmax — Pmin )0
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where pna.x and pp, will be estimated from a deterministic model of large vortex
structures in compressible shear flow, assumed to be representative of the typical
eddies that contribute to the rapid pressure—strain term.

4.2. Deterministic model for pressure extrema

Pressure minima in a flow can be identified with the cores of vortices, whereas pressure
maxima occur at stagnation points. We present a model for the pressure minima first.
A common description of a region of rotating fluid is the Oseen vortex, which has
been used before to represent vortices in mixing layers (Papamoschou & Lele 1992).
It assumes axisymmetric flow with the tangential velocity given by

vy = L(1 — e /R, (32)

where I" is the circulation, R is the vortex size, and « = 1.256 is chosen such that
Vg = Vg max atr=R.
In order to obtain the pressure minimum we turn to the inviscid radial momentum
equation:
2
Lo _ v (33)
p or r
To include the effects of density variation on the pressure field inside a vortex we
need a model for the thermodynamics. We observe from two-dimensional simulations
(Sandham & Reynolds 1989) at M = 0.6 that the temperature changes inside vortices
developing in temporal mixing layers are only 7% relative to the free stream, compared
with fluctuations of 40-50% for the density and pressure. With the assumption of
isothermal flow we can integrate (33) to get

Dmin

o

= exp _(yAvg,max/cé)’ (34)

where ¢, = (YPoo/pw)/? is the free-stream speed of sound and

1 ® v}
A== /0—6dr. (35)

UB,max r

We assume that A is a constant, equal to 1.69 for the Oseen vortex.

Although the Oseen vortex is two-dimensional and inviscid it can provide a rea-
sonable description of the pressure drop inside a vortex. A more general vortex is the
Burgers vortex which is a three-dimensional solution of the viscous Navier—Stokes
equations and has served as an illustration of the vortex stretching mechanism in
turbulence (Burgers 1948). The tangential velocity is again given by equation (32),
with a/R? = V/2v. The other two velocity components are v, = —Vr and v, = 2V z.
However, for a typical vortex radius (R), V turns out to be quite small for small
v (high Reynolds number). The corresponding pressure correction to equation (34),
proportional to V2, is then negligible.

The pressure drop is not strongly influenced by the precise equation of state either.
We have chosen an isothermal vortex, since in the inner region of turbulent vortices
the entropy is increased. The pressure minimum, however, would only change slightly
with the assumption of isentropic flow in the vortex core.

The pressure drop in equation (34) is then a function of the maximum tangential
velocity in a vortex, vgm.. A logical value for vgm,, at low Mach numbers is half the
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difference between the free-stream velocities,

Vomax = %AU, (36)

which gives rise to a pressure drop of puin — poo = —Ape(3AU)* for incompressible
mixing layers (obtained from (34) for M — 0). For compressible flows we consider
the rotational Mach number based on the velocity difference across the eddy,

. 2UH,max 400,max
M, = e Tomex
Coo AU

where M is the convective Mach number. If equation (36) were used for all Mach
numbers, M, would become larger than unity for M > 0.5. However, the conceptual
‘sonic-eddy’ model of Breidenthal (1990) implies that only eddies with M, < 1 play a
role in the turbulent energy cascade in a compressible flow. It is therefore proposed
that the following model be used for vgmay:

M, (37)

Vgymax = Min (1, Mﬁ’") IAU. (38)

M., 1s the critical Mach number beyond which vy, is affected by compressibility.
The value M, = 0.5 corresponds to the sonic-eddy model in which the largest
eddies satisfy M, = 1. Without the sonic-eddy model we find that the pressure in the
vortex cores would drop down to almost zero pressure, which is not observed in the
simulation results.

Next we turn to the prediction of the pressure maxima which correspond to
stagnation points. Isentropic flow is a good approximation for the fluid on a streamline
towards a stagnation point and the standard relation yields

Pmax _ (1+ %(,)) _ 1)M2)}’/(}’*1). (39)
o

Above M, we use the above formula with M = M, which corresponds to flow
stagnating around sonic eddies. For incompressible mixing layers the pressure rise
Dmax — Do €quals %poo( %AU)Z. This value is obtained if the limit M — 0 is taken and
is also predicted by Bernoulli’s equation. Physically, the incompressible limit does not
necessarily mean that the velocity difference is reduced to zero; it can also mean that
the speed of sound tends to infinity.

The results for the pressure variations are summarized in figure 7, obtained by
employing equations (34) and (38) for p,; and (39) for p,... Smoothing has been
applied to the pressure data to remove the discontinuity in the slope at M,,. This
only affects the curves in the immediate vicinity of M,.;. Figure 7(a) shows pressure
relative to free-stream pressure plotted against Mach number. The solid lines are the
pressure in the core of the vortex and the pressure at the stagnation point (further
discussed in §5). The dashed line shows the curve for zero pressure. It can be seen how
both the core and stagnation pressures reduce as the Mach number is increased to
satisfy the constraint that absolute pressure cannot drop below zero. If p,, — po kept
its incompressible value, we would have negative absolute pressure at M = 0.65.

Figure 7(b) shows the parameter p"(M) defined by equation (31), which is equal
to the growth rate reduction if the Reynolds stress and dissipation are isotropic.
A simple qualitative explanation for the growth rate reduction is that growth rate
Is proportional to pressure-strain and the pressure fluctuations must reduce as the
Mach number is increased to avoid negative pressures.
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FiGURE 7. Results of the pressure model: (a) pressure maximum and minimum (solid lines) relative
to the free-stream pressure, also showing the lowest possible pressure corresponding to zero pressure
in the vortex cores (dashed line); (b) the pressure reduction function p*(M) showing the strong
reduction with increasing Mach number for eddies contributing to the rapid part of the pressure
strain.

4.3. Anisotropy effects

We have seen that a simple isotropic picture of turbulence in the compressible mixing
layer is sufficient to explain qualitatively the growth rate reduction. At higher M in
particular, the isotropic picture underpredicts the growth rate and needs correction.
For quantitative predictions we need therefore to consider the anisotropy of the
turbulence. In this section we model all the terms in the integrated equations for the
diagonal Reynolds stresses in order to get a closed form for the growth rate. We need
to distinguish clearly where approximations are made. We regard the following as
accurate and well supported by the data: (a) Py; = p.(AU)*&’, as derived in §3.1, and
Py, = P33 = 0; (b) negligible pressure dilatation, and hence from the turbulence kinetic
energy equation € = 5’(%1000(AU)2 —k); and (c) negligible dilatational dissipation.

Our main model equation is (26), using the pressure reduction function (31) on
the rapid pressure—strain and the usual Rotta form for the slow pressure—strain term.
Isotropic dissipation is still assumed (e;; = 0). Thus,

&'(2byik — 3po(AUY) = —2c1€byy — eap™(M)peo(AUY’. (40)

To reduce this equation to a closed equation for &, it is sufficient to express the
anisotropy b;; and the Reynolds stresses Ry, and Rs; in terms of 6'. We suggest the
following models:

by = (b118")m=0 /6’ = c3AU/S, (41)
Ry = Raz = (R33/0")m=0 8’ = c4po, AU/, (42)

expressing that the anisotropy of the diagonal stresses increases if the growth rate
decreases. The anisotropy of the turbulence is expected to change, since there is a
move to more streamwise turbulence structures as the Mach number is increased. By
analogy with other flows where streamwise structure becomes important we expect
the anisotropy by; to increase. The precise functional form of by;, Ry and Rj; is
hypothetical and other choices could be equally or more plausible. However, the
models above are in reasonable agreement with the data and lead to a relatively
simple equation for J'.

As model constants we use ¢; = 2.2 and ¢, = 0.021, ¢; = 0.0025 and c¢; = 4.5.
The Rotta constant ¢; is the same as in some second-moment closures (Gibson &
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FIGURE 8. Graph of the model prediction for growth rate &' (solid line),
compared with simulation data (symbols).

Launder 1978). All other constants are estimated for incompressible flow (roughly
equal to the M = 0.2 simulation results).

Putting all of the above together, we can derive a quadratic equation for the growth
rate a(6'/AU)? + bd'/JAU + ¢ = 0 where the coefficients are related to the model
constants by

a= 3 + 2c3¢4(c; — 1), (43)
b=—3cs(14¢) — 3e0"(M), (44)
c=aep (M) + clcﬁ. (45)

Only the largest root of the quadratic is realizable (positive €) and once ¢’ is known
all other quantities can be easily found.

Figures 8 and 9 give the predictions from the model up to M = 2 (with p, = 1,
AU = 2), compared with the simulation data. Figure 8 shows the growth rate against
M compared with the simulation data. The behaviour for larger Mach numbers is
of considerable interest, but we should caution that there is little experimental or
numerical data available between M = 1.2 and M = 2 to validate the model. Figure
9 shows various turbulence quantities. The Reynolds stresses (figure 9a,b) are in
good agreement with the simulation results. The Ry and R3; components decrease
proportional to the growth rate, while the R;; component levels out at about half
its incompressible level. Figures 9(¢) and 9(d) show the pressure-strain term and
Reynolds stress anisotropy by, compared with simulation data. The pressure—strain
term especially is in good agreement with the simulation data. Turbulence kinetic
energy k and dissipation ¢ are shown in figures 9(¢) and 9(f). The dissipation is
unaffected by compressibility at low Mach numbers and only decreases by about a
factor of two up to M = 2.

The deviations from the isotropic picture are most significant at high Mach num-
bers, where in the anisotropic model a larger growth rate is found than in the isotropic
case. The isotropic model predicts zero growth rate for infinite Mach number, since
the growth rate is proportional to p*(M). The limiting growth rate for M —
provided by the anisotropic model is obtained if p*(M) = 0 is substituted in the coef-
ficients of the quadratic (43)-(45). Using the values of the model constants proposed
above, we obtain 6’ — 0.015 for M — oo, which is about 20% of the incompressible
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FiGure 9. Turbulence statistics from model (solid lines) compared with simulation data (triangles
for 11-component, crosses for 22, diamonds for 33): (a) Reynolds stress Ryy, (b) Reynolds stresses
Ry, and Ry, (¢) pressure strain I1qy, [Ty and 133, (d) Reynolds stress anisotropy byj, {e) turbulence
kinetic energy k, (f) dissipation e.

growth rate. Thus the increase in b;; at high Mach numbers limits the growth rate
reduction through the slow pressure—strain term.

As has been remarked, our simulations are not fully self-similar and this partially
explains the scatter of the DNS data visible in figures 8 and 9 (compare figure 5).
Another reason could be the anisotropy of the dissipation in the simulations, but not
included in the model since it is expected to vanish at very high Reynolds numbers.
Although not very large, the dissipation anisotropy is most significant at M = 1.2 and
according to equation (26) it has a positive contribution to the growth rate. Hence
the DNS growth rate in figure 8 for M = 1.2 is indeed expected to be slightly larger
than the model prediction.

The model is well-conditioned, i.e. not very sensitive to variations in the model
constants. Additional calculations of the growth rate have been performed in which
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each of the model constants was changed separately. The relative variations of the
growth rate were approximately equal to or less than the relative changes of the
model constants.

5. Discussion

One important observation in this paper has been that dilatation dissipation and
pressure dilatation are not large in the compressible mixing layer, even when eddy
shocklets are present. Turbulence models constructed using dilatation dissipation
or pressure dilatation are not necessarily invalidated by this, but their claim to be
based on the correct physics of the flow would now appear to be false. Some
of the initial support for the dilatation dissipation concept came from simulations
of isotropic or fully homogeneous compressible turbulence. Eddy shocklets were
observed in isotropic and homogeneous shear flow (Lee, Lele & Moin 1991; Blaisdell
et al. 1991) and the magnitude of the dilatational contribution to dissipation was
computed and compared with models for dilatational dissipation, for example that
of Sarkar et al. (1991). Blaisdell et al. found the model by Sarkar et al. to be
accurate for turbulent Mach numbers below 0.3. For larger turbulent Mach numbers
the dilatation dissipation was found to be constant at a level of no more than 10%
of the total dissipation. Also Lee et al. (1991) found only 5% dilatation dissipation
at a turbulent Mach number of 0.5, whereas Sarkar’s model would predict 25%.
Thus, even in isotropic and homogeneous shear flow, the dilatational terms cannot
be regarded as essential in causing reduced growth rates. This is confirmed by
recent work on homogeneous shear flow (Sarkar 1995), in which compressibility was
found to affect other terms (e.g. production) more than the dissipation. Another
recent confirmation is the work by Simone & Cambon (1995), which shows that
the effect of compressibility is reflected in pressure-strain correlations and related
to the anisotropy of the Reynolds stress tensor, rather than in explicit dilatation
terms such as pressure—dilatation and dilatation dissipation. The subject of the
latter paper is also homogeneous shear flow, studied by means of DNS and rapid
distortion theory (Durbin & Zeman 1992; Cambon et al. 1993; Jacquin, Cambon &
Blin 1993). Furthermore, a different form of splitting the dissipation into solenoidal
and dilatational parts has recently been proposed (Huang 1995). This decomposition
would predict even smaller dilatational effects.

The mixing layer is very strongly affected by compressibility. Using the model from
this paper, this can be explained by the large pressure fluctuations of the typical
eddies in the flow. Similarly large pressure fluctuations and hence Mach number
sensitivity would be found in jet and wake flows. Other flows, such as the turbulent
boundary layer on a wall, have comparatively much weaker pressure fluctuations and
the effects of compressibility do not appear until much higher Mach numbers.

In this paper we did not intend to develop a turbulent field model, applicable to a
general turbulent flow. We have analysed and modelled the integrated Reynolds stress
equations in order to determine the growth rate for the mixing layer. The model for
the integrated pressure-strain presented in this paper is (via p*) a function of the
convective Mach number M. Although this Mach number is not a field quantity, it is
closely related to a field quantity, the local gradient Mach number M, (Sarkar 1995).
Whether the gradient Mach number could play a role in a turbulent field model needs
further exploration.

The agreement between the actual level of the pressure fluctuations (figure 6) and
the model predictions (figure 7) is reasonable. The main difference is p* at high Mach
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FiGure 10. Normalized growth rate against Mach number comparing the current model (solid line)
with the linear stability result (dashed line) and experimental data from Goebel & Dutton (1991)
(symbols).

numbers which is larger than the model predicts. This could be due to different types
of eddies contributing to the pressure ficld. There are eddies that contribute to the
rapid pressure—strain (the part that depends on mean velocity gradients and this part
1s modelled in §4.2) and eddies that contribute to the slow part. For the latter types of
vortices the pressures may be higher than those obtained with the isentropic model.
Furthermore, shocks will also give rise to higher pressure maxima than predicted
with isentropic assumptions, since the entropy of the fluid increases when passing
through a shock. The high pressure then comes from a supersonic eddy which
generates a shock wave. Supersonic eddies may be present in the flow, but according
to Breidenthal (1990) do not have time to rotate and contribute to entrainment
and growth rate. If the parameter p"(M) is corrected for higher pressures at higher
Mach numbers, the predicted growth rate will be somewhat larger. Reasonable
agreement with experimental and simulation data is nevertheless still obtained, if
Pmax = Do + %poo(%AU)2 is substituted in equation (31), assuming that p* does not
exceed its incompressible value.

In the introduction it was remarked that the reduction in growth rates with Mach
number for the most unstable waves from linear stability theory matches almost
exactly the reduction in shear layer growth rate of the fully turbulent flow. In figure
10 we compare the growth rate reduction from temporal stability theory with the
result from the turbulence model of §4.3 and experimental data from Goebel &
Dutton (1991). The latter is chosen because the density ratio across the shear layer is
always less than 2:1, so that these data are comparatively insensitive to the model for
incompressible growth rate used for normalization. As can be seen there is a good
correlation between the two curves and the experiments.

The growth rate w; in the linear regime and the growth rate of the momentum
thickness ¢’ in the turbulent regime are not defined in the same way. In the
linear regime we have an exponential growth of the amplitude of the disturbance.
Except from the effect of molecular dissipation, the width of the profiles does not
change and the momentum thickness does not grow. In the nonlinear turbulent
regime however, there is a constant growth of the thickness of the profiles {and
the momentum thickness), whereas the amplitude of the perturbations has evolved
towards a saturated state. Hence, it is difficult to explain the reduction in &’ directly
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by the reduction in w;. However, in the following it does appear that the terms in
the integrated Reynolds stress transport equations that are reduced in the turbulent
stage are also reduced in the linear stage. In particular the pressure fluctuations at
increased Mach number also show a reduction in the linear stage. To establish this
we apply the mathematical averaging procedure of §3 (average over the streamwise
and spanwise directions) to the fluctuations in the linear stability regime.

In temporal linear stability theory of the mixing layer the fluctuating variables have
the following form:

B(x, y,2,1) = A($(x2) + 1! (xy))e Hxa+5), (46)

where A is a small amplitude, w; is the temporal growth rate, « and B are the
streamwise and spanwise wavenumbers, i is the complex number and $’ and 43" are
the real and imaginary part of the eigenfunction ¢A> The integrated diagonal Reynolds
stress equations reduce to

ol |* = Py + 1y, (47)
w;lla|? = O, (48)
;| f)* = 33, (49)

where | ¢]? = [1¢|2dx; and the terms on the right-hand side reflect production and
pressure-strain:

P, = / (@8 + 04)) —-dx2, (50)

Il =a /@ — pid, (51)

~ o dil 5 it

o= [0+ 5 (52)
X2

ﬁn=ﬁ/W% @mM. (53)

In the derivation we have assumed p = 1 following Blumen (1970). The pressure
eigenfunction satisfies the following relation (Blumen 1970):

o M2|p|? = —I . (54)

We observe that positive growth rate implies I » >0, I1 33 > 0, H w < 0 and,
consequently, 1 i1 < 0. Furthermore, negative i 1 1mphes positive P“ Hence, the
production and pressure—strain terms in the linear regime have the same sign as in
the turbulent regime.

We have solved the linear stability problem for several Mach numbers from 0 up
to 1.6 and obtained the most unstable mode normalized with ||[#;]] = 1 for each
Mach number. The pressure fluctuation ||p|| was observed to drop rapidly with Mach
number. This is expected from equation (54), since |[[| < \[T1;] ~ Ipll i)l To
maximize the growth rate at high Mach number the pressure fluctuations should
become smaller. Up to M = 0.6 the production and pressure-strain were observed
to decrease in exact proportion to the growth rate w;. Above M = 0.6 we have a
change from two-dimensional to oblique disturbances in the stability theory. In this
regime the pressure—strain was observed to drop more rapidly than production and
both dropped more rapidly than the linear growth rate.
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Hence, although the linear w; and turbulent ¢’ are different quantities, the reduction
at increased Mach number is in both cases connected to reduced pressure fluctuations,
reduced production and pressure-strain and increased anisotropy of the streamwise
fluctuations.

6. Conclusions

Detailed analysis has been made of direct simulation databases of compressible
mixing layers with convective Mach number M ranging from 0.2 to 1.2. The simu-
lations showed a reduction in growth rate matching the reduction found in previous
experimental work. Instantaneous realizations of the flow at M = 1.2 revealed the
presence of eddy shocklets. However, statistics for dilatation dissipation and pressure—
dilatation, which might be expected to become important because of the shocklets,
showed that these were much smaller than the total dissipation. Therefore the eddy
shocklets, and the dilatational terms in the averaged equations, were not found to be
significant for understanding the reduced growth rate.

Analysis of integrated statistics, incorporating a relation between the integrated
production and the shear layer growth rate, showed that the reduction in growth rate
was due to a reduction in the pressure-strain term. A model was then developed
based on reduced pressure fluctuations. Values for pressure were deduced from a
deterministic model for typical compressible eddies. Simple anisotropy considerations
closed the model which was then demonstrated to predict the variation of integrated
Reynolds stresses, pressure—strain terms, and dissipation, in good agreement with the
direct simulation data.
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