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Chapter 1

Introduction

Turbulence, the chaotic and apparently unpredictable state of a fluid, is one of
the most challenging problems in fluid dynamics. The smoke of a fire, the wake
generated by a moving ship and the flow near a flying aeroplane are examples of
turbulent flows. Since turbulence strongly increases the mixing and friction in
flows, it is an issue of great practical significance in technology. Numerous sci-
entists have put much effort into the observation, description and understanding
of turbulent flows. More than a century ago Reynolds (1883) demonstrated that
a flow changes from an orderly to a turbulent state when a certain parameter,
now called the Reynolds number, exceeds a critical value. Furthermore, an hi-
erarchy of eddies (whirls) from large to small scales exists in turbulent flows, in
which larger eddies transfer energy to smaller eddies, whereas the smallest eddies
are dissipated by molecular viscosity. Richardson (1922) formulated this energy
cascade process as follows: “Big whirls have little whirls, which feed on their
velocity, and little whirls have lesser whirls, and so on to viscosity.” Using the
energy cascade theory, another famous scientist, Kolmogorov (1941), formulated
physical laws for the various scales present in a turbulent flow.

Currently, several approaches to study turbulent flows exist: analytical theory,
physical experiment and numerical simulation. The complexity of the problem
strongly slows down progress in the analytical approach. Experimental research
has been conducted for many years and will remain of fundamental importance in
this field. Closely connected with the increase of computational power in recent
years, growing attention is paid to the numerical simulation of turbulence, which
is also the approach followed in this thesis. This approach is advantageous over
experiments when many flow quantities at a single instance or quantities which
are difficult to measure are needed. However, the speed and memory size of
computers restrict the ability to simulate turbulence, dependent on the amount
of scales present in the flow and the complexity of the flow configuration.
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We can distinguish between incompressible and compressible turbulent flows.
A fluid is called compressible if the density is variable, otherwise it is called in-
compressible. Compressibility is a fluid property which makes a turbulent fluid
even more complicated. Most turbulent research has been directed towards in-
compressible flow. While incompressible turbulence is still far from understood,
even much less is known about its compressible counterpart. Especially when
the velocities in the fluid reach values near or higher than the speed of sound,
compressibility has a considerable effect on the flow and shock-waves can occur.
Renewed interest in high-speed flows from aircraft industry has stimulated funda-
mental research in the field of compressible turbulence (Lele 1994). In this thesis
we consider the turbulent mixing of two adjacent streams of compressible fluid
with different speeds. This flow is investigated in the regimes of low, moderate
and high compressibility.

Large-Eddy Simulation is an important technique used in the numerical simu-
lation of turbulence. The main purpose of this thesis is to advance this technique
for compressible flows. The first section gives an overview of the techniques used
in the numerical simulation of turbulence and, in particular, it introduces the
Large-Eddy Simulation technique. In order to test existing and new Large-Eddy
Simulation models, simulations of a specific three-dimensional turbulent flow have
to be conducted. The specific flow simulated in this thesis is the compressible
mixing layer, important in many technological applications. Apart from the
purpose of testing Large-Eddy Simulation, the simulations of the compressible
mixing layer are used to address a number of unanswered important questions
about physical processes in this flow. An introduction to the compressible mixing
layer is given in section two. After these introductions, we formulate our aims in
detail in the third section.

1.1 Numerical simulation of turbulence

The starting point for the numerical simulation of compressible turbulence is
formed by the Navier-Stokes equations, which represent conservation of mass,
momentum and energy. The conceptually most straightforward technique in the
simulation of turbulence is Direct Numerical Simulation (DNS), which directly
solves the Navier-Stokes equations using a numerical algorithm (Rogallo & Moin
1984). This ‘brute force’ approach attempts to solve all spatial and temporal
fluctuations in the fluid and, consequently, has to cover a wide range of scales.
The computational grid should be sufficiently fine, since all these scales have to
be represented on the grid. The DNS provides the flow variables ρ, p and the
three velocity components ui, which fluctuate in time and space. These variables
contain all the relevant scales of motion, i.e. the DNS is fully resolved. The

2



amount of relevant scales in a turbulent flow increases if the Reynolds number
increases. The Reynolds number is defined as

Re =
ρRuRLR

µR
, (1.1)

where ρR, uR, LR and µR represent a reference density, velocity, length and
viscosity, respectively. This number can be interpreted as the ratio between
inertial and viscous forces. Small scales in a turbulent flow are generated by
the inertial forces and dissipated by the viscous forces. The viscous forces are
relatively small if the Reynolds number is high, which leads to the formation of a
relatively large amount of small scales. With the current computational capacity
DNS is only feasible for turbulent flows in simple geometries at relatively low
Reynolds numbers.

In order to reduce the amount of scales to be solved, an averaging operator can
be applied to the Navier-Stokes equations. The classical averaging operator is the
ensemble average (Monin & Yaglom 1971), which leads to the Reynolds-Averaged
Navier-Stokes equations (RANS). The averaging of nonlinear terms introduces
new unknowns in the equations, for which a turbulence model is adopted. The
RANS-technique only solves ensemble averaged quantities, describing the mean
flow. In contrast to DNS, this computational technique can presently be applied
to flows in complex geometries and at high Reynolds numbers. For these reasons,
it is widely used in engineering practice. However, the errors introduced by the
turbulence modelling reduce the accuracy and more detailed information than
provided by the ensemble averaged quantities is often required. For example
in aerodynamic applications high accuracy is required, whereas the the available
turbulence models lead to poor predictions, especially when shocks and separation
are present.

The third technique distinguished here, Large-Eddy Simulation (LES), does
not solve the full range of scales either (unlike DNS), but it solves a much larger
range of scales than RANS does. In LES the large eddies are solved, which cor-
respond to large scales, while effects of the small eddies are modelled. In this ap-
proach the averaging operator is not the ensemble average, but a filter which is a
local weighted average over a volume of fluid. Consequently, the LES-formulation
employs filtered flow variables, denoted by ρ, p and ũi. The basic filtering is de-
noted by an overbar, from which a related filtering, needed for compressible flows
and denoted by a tilde, is derived. The filtering depends on the filter width ∆,
which is a characteristic spatial length-scale, and has approximately the effect
that scales larger than ∆ (resolved scales) are still present in the filtered vari-
ables, whereas contributions of scales smaller than ∆ (subgrid scales) have been
removed. Application of this averaging procedure to the Navier-Stokes equations
yields the filtered Navier-Stokes equations. Like the ensemble averaging, the fil-
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tering introduces unknown quantities, so-called subgrid-terms, which have to be
modelled in order to close the system of equations. In LES the filtered equations
are solved with a numerical algorithm and the resulting filtered variables describe
the large-scale motion of the flow. The filtered variables contain much more in-
formation than the mean flow solved with the RANS-approach, since only the
small-scale turbulence is modelled, instead of the full turbulence. Hence LES is
potentially more accurate than RANS, since less modelling errors are introduced.
In addition the demand for computer resources in LES is considerably smaller
than in DNS, because not all scales need to be solved. Consequently, LES is more
likely to become an engineering tool than DNS, since more complicated flows at
higher Reynolds numbers can be simulated.

The modelling of the unknown quantities introduced by filtering is called
subgrid-modelling. The models involved, referred to as subgrid-models, express
the subgrid-terms in filtered flow variables. With respect to the accuracy of LES,
subgrid-modelling is an important issue, and, consequently much effort has been
put into the development of subgrid-models. For the testing of subgrid-models
we distinguish between so-called a priori and a posteriori tests. Both types of
tests require accurate data of a turbulent flow as a point of reference, which can
be obtained by experiment or DNS. In this work we choose to use DNS-data
for the testing of subgrid-models, since especially for compressible flows detailed
experimental data is not easily available. Unfortunately, DNS-data can presently
only be obtained for relatively low Reynolds numbers and, consequently, the tests
formally validate LES of turbulent flows at low Reynolds number only. However,
even low Reynolds number flows can exhibit turbulent behaviour. Furthermore,
several important conclusions drawn from tests at low Reynolds numbers do not
alter if the tests are performed using experimental data at high Reynolds number
(Liu et al. 1994).

Figure 1.1 schematically shows the set-up of a priori tests for the most im-
portant subgrid-term, the turbulent stress tensor

τij = ũiuj − ũiũj. (1.2)

The symbol mij in the figure represents the subgrid-model for this tensor. The
calculation of τij starting from the DNS velocity field ui is straightforward. Since
the subgrid-model is a function of filtered variables only, mij is evaluated start-
ing from the filtered velocity field ũi. The final step in the a priori test is the
comparison between the model mij and the exact subgrid-term τij. The level of
agreement between these two tensors, which can be expressed by a correlation
coefficient, measures the quality of the model. This procedure of testing is called
a priori testing, since no actual Large-Eddy Simulations are performed. Results
of a priori tests are certainly of some value, but require a careful interpretation.
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Figure 1.1: Diagram illustrating the technique of a priori testing for the turbulent
stress tensor τij.

They often tend to be too pessimistic, since low correlations between stresses and
predictions do not necessarily lead to poor results when the model is implemented
in an actual LES (Reynolds 1990; Meneveau 1994). A subgrid-model with a low
correlation can still provide reasonable results if it correctly models the turbu-
lent dissipation process. On the other hand, high a priori correlations do not
necessarily result in an accurate LES. Despite high correlations, models can lead
to unstable simulations due to insufficient turbulent dissipation (Vreman et al.

1994f).
For these reasons, investigation of the behaviour of subgrid-models in actual

simulations is indispensable in order to draw conclusions about the performance
of models . A posteriori testing, schematically illustrated in figure 1.2, meets
this requirement. As in the previous approach, DNS is performed, providing the
flow field, which is subsequently filtered in order to obtain the filtered variables.
The single arrows in figure 1.2 indicate this route. The other route, indicated by
double arrows, also provides a filtered flow field, but now by solving the filtered
Navier-Stokes equations using LES with a given subgrid-model. Both routes will
result in identical filtered variables for a perfect LES. The level of agreement
between the two results measures the quality of the Large-Eddy Simulation.

Discrepancies between filtered DNS and LES-results are introduced by both
the subgrid-model and the numerical algorithm. The computational grid-size h
is usually taken of the order of the filter width, h = ∆ or h = 1

2∆, which shows
that the smallest scales in the filtered field are represented on only a few grid-
points. Consequently, not only the physical subgrid-modelling error, but also

5



filtered

Navier-Stokes
equations

Navier-Stokes
equations

?
?

filter

filtered

variables
ρ, p, ũi
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Figure 1.2: Diagram illustrating the technique of a posteriori testing.

numerical errors are expected to affect the results. In actual LES these sources
of errors interact, which complicates a posteriori testing, since the separation
of subgrid-modelling and numerical effects in the final discrepancies is difficult.
In literature the numerical effects in LES have not been studied in detail; most
research has been directed towards the issue of subgrid-modelling. With respect
to subgrid-modelling, most effort has been put into the development of models for
incompressible flow. In the filtered incompressible Navier-Stokes equations, the
turbulent stress tensor, appearing in the momentum equation, is the only subgrid-
term. Compressible LES, however, incorporates the filtered energy equation,
which introduces several additional subgrid-terms. Almost no research has been
directed towards the subgrid-modelling of these compressible quantities.

In the following, we give a rough overview of the developments in the mod-
elling of the most important subgrid-term, the turbulent stress tensor. Since the
foundation of LES, which was laid by the meteorologists Smagorinsky (1963),
Lilly (1967) and Deardorff (1970), the most popular subgrid-model has been the
Smagorinsky model. The model employs an eddy-viscosity, which like molec-
ular viscosity extracts energy from the resolved scales in the simulation. The
eddy-viscosity is introduced in order to mimic the turbulent cascade process,
transferring energy from the resolved to the subgrid-scales. Successful LES has
been performed using the Smagorinsky model, especially for homogeneous and
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statistically stationary turbulence. However, in more complicated flows the model
does not predict the correct energy transfer in near-wall regions and transitional
stages. In order to overcome these deficiencies, Germano (1992) formulated the
dynamic eddy-viscosity model, replacing the model constant in the Smagorinsky
model with a time- and space-dependent model coefficient. A dynamic proce-
dure adjusts this coefficient to the local turbulence in such a way that locally the
correct energy dissipation is provided.

Although the Smagorinsky model in combination with the dynamic procedure
is able to provide locally the correct energy dissipation, it has repeatedly been
observed that the correlation between the model and the exact turbulent stress is
poor. Alternatively, other subgrid-models have been proposed, which do not use
an eddy-viscosity hypothesis. An example is the ’gradient’ model (Clark et al.

1979), which is based on the substitution of Taylor expansions of the unfiltered
velocity in terms of the filtered velocity into equation (1.2). Furthermore, Bardina
et al. (1984) proposed the similarity model, which is obtained if the definition
of the turbulent stress tensor (1.2) is applied to the filtered velocity ũi instead
of the unfiltered ui. However, the gradient and similarity models are not purely
dissipative and, consequently, they can give rise to numerical difficulties in actual
simulations. Aspects of these three types of basic subgrid-models (eddy-viscosity,
gradient and similarity) will further be studied in this thesis in combination with
the dynamic procedure. In each case the incorporation of the dynamic procedure
will be found to improve the results.

1.2 The compressible mixing layer

Compressible free shear layers occur in many complex problems of technological
importance. An example is the flow behind an aerofoil, where two streams of
air with different velocities join. The amount of turbulence near an aerofoil is
desired to be as low as possible, since turbulence increases the drag of the vehicle.
Another case is the flow in jet-propulsion engines based on supersonic combustion,
where the efficiency depends on the time needed to mix fuel and oxidizer in the
combustor (Lu & Wu 1991; Sandham & Reynolds 1991). For this reason the
mixing conditions for free shear layers in such systems should be maximized. To
improve such conditions, turbulence plays a central role, since it greatly enhances
the mixing properties of a flow. A prototype free shear flow is the mixing layer,
which is introduced in this section.

The mixing layer can be studied in a spatial or temporal framework. In ex-
periments the mixing layer is generated by a splitter plate separating two streams
of fluid with different speeds. The mixing layer develops from the location where
the streams come together, and its thickness increases as a function of the spatial
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u = 1

u = -1

Figure 1.3: Configuration of the temporal mixing layer.

coordinate in the streamwise direction. Numerical simulations of such spatially
developing mixing layers have mainly been performed in two dimensions, be-
cause the demand on computational resources is very high, since a large extent
of the computational box in the streamwise direction is required. For this reason
the temporal mixing layer is considered, which qualitatively exhibits the same
physical phenomena as the spatial case, but requires an order of magnitude less
computational effort. In the temporal framework a computational box is consid-
ered which is relatively small in the streamwise direction. This computational
domain can be interpreted as a ’window’ over the mixing layer that moves with
the centre plane velocity in the streamwise direction. In this frame of reference
the thickness of the layer increases as a function of time rather than as a function
of the streamwise coordinate.

Figure 1.3 illustrates the configuration of the temporal mixing layer. A co-
ordinate system convecting with the mean velocity in the centre plane has been
adopted and in this frame of reference the layer contains two streams with equal
and opposite free-stream speed U , which is used as reference velocity. Other
reference values are half the initial vorticity thickness (LR) and the free-stream
values for the density (ρR), temperature (TR) and viscosity (µR). In this case
the free-stream Mach number M is equal to the convective Mach number. The
convective Mach number is the most important parameter in the characterization
of intrinsic compressibility effects. It was introduced by Bogdanoff et al. (1983)
and extensively used by Papamoschou & Roshko (1988). For streams with equal
ratio of specific heats we have M = (U1 −U2)/(c1 + c2), where U1 and U2 are the
two free-stream velocities and c1 and c2 are the free-stream sound speeds. In our
case U2 = −U1 and c1 = c2.
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We consider the three-dimensional temporal mixing layer in the rectangular
domain [0, L1] × [−1

2L2,
1
2L2] × [0, L3], where L1, L2 and L3 correspond to the

streamwise (x1), normal (x2) and spanwise (x3) directions, respectively. Periodic
boundary conditions are imposed in the stream- and spanwise directions,

Φ(x1 + L1, x2, x3, t) = Φ(x1, x2, x3, t) = Φ(x1, x2, x3 + L3, t) (1.3)

where Φ represents an arbitrary flow variable. The boundaries in the normal
direction are free-slip walls, which implies a zero normal velocity and zero normal
derivatives of density, pressure and tangential velocities. The initial mean velocity
profile is the hyperbolic tangent profile,

u1 = tanh(x2), u2 = u3 = 0, (1.4)

whereas the initial temperature profile is obtained from the Busemann-Crocco
law (Ragab & Wu 1989),

T = 1 + 1
2(γ − 1)M2(1 − u1)(u1 − 1), (1.5)

where γ is the ratio of the specific heats CP and CV . From the temperature and
a uniform mean pressure distribution (p = 1/(γM2)), the density is obtained
using the equation of state for an ideal gas. In order to initiate turbulence, a
perturbation consisting of eigenfunctions provided by linear stability theory is
superimposed on the mean profile (Sandham & Reynolds 1991).

Linear stability theory is essential to understand the initial development of
the flow. In this theory the Navier-Stokes equations are linearized around the
mean profile to obtain equations for the disturbances around the mean flow field.
Each wave disturbance is represented in the form,

φ = φ̂(x2)e
i(αx1+βx3−ct), (1.6)

where the real part of φ is a disturbance on the mean profile of ρ, ui or T . The
parameters α and β are the real wave numbers characterizing the specific mode.
Substitution of this disturbance in the linear stability equations yields an eigen-
value problem with complex eigenvalue c = cr + ici and complex eigenfunction φ̂.
Instability corresponds with a positive growth rate (ci > 0) and, consequently, an
exponential growth of the wave disturbance. The most unstable mode is deter-
mined by a pair (α, β) that yields a maximum growth rate. The initial mean flow
can also be perturbed with uniform noise. In that case the most unstable mode
will be amplified most and will become dominant in the linear regime. Linear sta-
bility theory thus describes the flow in the linear regime, which lasts until nonlin-
ear effects set in when the perturbations have grown sufficiently large. The linear
stability of the mixing layer has thoroughly been investigated (Michalke 1964,
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Figure 1.4: Contours of spanwise vorticity in the two-dimensional mixing layer show-
ing the formation of vortices (a) and subsequent pairing (b).

Blumen 1970, Sandham & Reynolds 1991). It was found that for incompressible
(M=0) up to moderately compressible flows (M=0.6) the most unstable mode is
two-dimensional (β = 0). If the convective Mach number is higher (M > 0.6)
a pair of opposite oblique modes, (α, β) and (α,−β) with β 6= 0 becomes most
unstable and the primary instability is three-dimensional. The magnitude of the
linear growth rate of the most unstable mode decreases if the Mach number in-
creases. Thus, if the Mach number increases from M = 0, the growth rate of the
most unstable two-dimensional wave decreases. At about M = 0.6 the dominant
two- and three-dimensional instabilities are equally amplified, whereas beyond
this Mach number the most unstable wave is three-dimensional.

In order to give a first impression of the mixing layer, we discuss the evolution
of the mixing layer in the nonlinear stages for the two-dimensional case. The
two-dimensional mixing layer has numerically been investigated for several Mach
numbers using both the temporal and the spatial approach (Lesieur et al. 1988;
Sandham & Reynolds 1989; Ragab & Sheen 1992; Vreman et al. 1995a). In
these simulations the two-dimensional instability, amplified in the linear regime,
saturates when nonlinear effects set in, leading to the formation of a row of
spanwise vortices. If in the temporal case L1 equals n times the wave length of the
dominant mode, a row of n spanwise vortices form in the computational domain
(Lesieur et al. 1988, Lesieur 1990). In the further evolution of the flow adjacent
vortices start to rotate around a common centre and merge. Vortices formed by
merging subsequently pair with other vortices. Figure 1.4 shows the formation
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and the subsequent pairing of vortices in a simulation with n = 2 (Vreman et

al. 1995a). The nonlinear processes considerably stimulate the growth of the
thickness of the shear layer compared to the laminar growth in the linear regime.
When the Mach number is larger than 0.7, supersonic regions occur in the flow
and shock-waves form on top of the vortices (Sandham & Reynolds 1989; Lele
1989).

The development of the three-dimensional mixing layer is quite different from
the two-dimensional case, especially for high Mach numbers where the primary
instability is three-dimensional. Numerical simulations for the three-dimensional
mixing layer have been performed within the temporal framework only. First, we
turn to the incompressible case, which has been investigated by Moser & Rogers
(1993) and Comte et al. (1992). The primary instability is two-dimensional,
therefore two-dimensional rollers of spanwise vorticity develop, perpendicular to
the stream-wise direction. As in the two-dimensional case these large-scale struc-
tures pair, resulting in larger rollers which subsequently merge. However, in the
three-dimensional case the primary instability forming these rollers is followed
by a three-dimensional secondary instability, producing braids of streamwise vor-
ticity between the rollers. These instabilities are followed by a transition to
small-scale turbulence, resulting in a complicated disordered flow, although the
roller structures can still be discerned.

With respect to the compressible mixing layer in three dimensions, the flow
exhibits features similar to the incompressible case, if the Mach number is low.
However, at higher Mach numbers (M > 0.6) the scenario is different, since
the primary instability is then three-dimensional. From this instability a stag-
gered pattern of Λ-vortices develops, instead of the rollers perpendicular to the
stream-wise direction. Recent simulations at M = 0.8 demonstrate that after
the Λ-vortices have developed, the transition to small-scale turbulence starts,
accompanied by an enhanced mixing of the flow (Luo & Sandham 1994, 1995).
In contrast to the two-dimensional mixing layer, no shocks occur in the three-
dimensional case up to M = 1.05 (Sandham & Reynolds 1991), and whether they
occur in three-dimensional flows at higher Mach number was until recently an
open question (Lele 1994, Vreman et al. 1995f). A well established compressibil-
ity effect is the reduced non-dimensionalised turbulent shear layer growth with
increased Mach number (Brown & Roshko 1974). Although this effect has been
widely debated in literature, no convincing explanation of the reduced growth
rate in the turbulent regime has been given.

In this thesis results of three-dimensional numerical simulations will be pre-
sented for three different Mach numbers: low compressibility (M = 0.2), moder-
ate compressibility (M = 0.6) and high compressibility (M = 1.2). Examination
of the DNS-results at M = 1.2 reveals the occurrence of shocks in the turbulent
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regime. Furthermore, we will analyse the mechanism responsible for the reduced
growth rate in compressible mixing layers.

1.3 Purpose and outline

In this section we formulate our research questions more specifically and give
a global overview of the contents of the following chapters. The primary aim
of this thesis is further development of LES for compressible flows. We have
selected the compressible mixing layer in order to develop the LES-technique
for compressible flow. The mixing layer evolves from a laminar to a turbulent
state, thus the complete path from transition to turbulence is incorporated in the
testing of subgrid-models. Since the flow is strongly affected by compressibility,
it is also a suitable test-case for compressible subgrid-modelling. The testing
procedures of LES, introduced in section 1, require both DNS and LES. The
simple configuration of the flow and the relatively fast evolution into a turbulent
state are appropriate to make DNS possible. On the other hand, DNS of the
mixing layer will not serve as a data-base for the testing of LES only. The
second aim of this thesis is to investigate the physical phenomena in the mixing
layer at high Mach numbers. In the following we discuss the research questions
corresponding to the two aims of this thesis.

In order to develop LES models for compressible flow simulations, we will first
turn to questions regarding the modelling of the turbulent stress tensor. This ten-
sor is not a compressibility term and, consequently, these questions are also rele-
vant for incompressible LES. We will consider a number of subgrid-models for the
turbulent stress tensor, including dynamic models (chapter 3). The recently de-
veloped dynamic procedure has been a major step forward in LES of transitional
and inhomogeneous flows. The dynamic procedure is usually applied in conjunc-
tion with the Smagorinsky model and the question arises whether the procedure
could also improve other subgrid-models. In addition to the standard dynamic
eddy-viscosity model, we will present the dynamic mixed and Clark models. The
dynamic mixed model has appeared in literature before, but contains a math-
ematical inconsistency, which is removed in our formulation. Furthermore, an
exact relation between the different filter widths in the dynamic procedure does
not exist for top-hat filters. We will derive an approximate relationship, which is
optimal in a certain sense.

Another research question concerns the combination of filter and subgrid-
model. It is generally assumed that the choice of a specific model is not related
to the filter choice. However, we will show that the turbulent stress tensor is
positive definite for certain filters only (chapter 4). The requirement that a
subgrid-model should also be positive definite in such cases yields constraints on
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the choice of the subgrid-model given a certain filter type.
Which model has to be preferred in actual Large-Eddy Simulations is the third

question that needs to be answered. Many subgrid-models for the turbulent stress
tensor are available, but systematic comparisons of the performance of a wide
range of subgrid-models in an inhomogeneous flow are rarely found in literature.
Such a comparison for the mixing layer at low Mach number will be presented in
chapter 5. For this purpose, we will perform DNS of the mixing layer at M = 0.2
and compare the filtered results with LES incorporating the subgrid-models from
chapter 3. Large-Eddy Simulations using these subgrid-models at high Reynolds
number will also be conducted. It will appear that the dynamic models are
considerably better than the non-dynamic models.

Apart from errors due to subgrid-modelling we have also errors introduced
by the numerical scheme. Further improvement of a certain subgrid-model is
only useful if the numerical errors are smaller than the subgrid-modelling errors.
The question of the role of the numerical errors relative to the subgrid-modelling
errors has insufficiently been answered in literature and is therefore addressed
(chapter 6). The numerical errors are not determined by the numerical scheme
only but also by the ratio ∆/h. In order to investigate the effect of numerical
errors, we will compare LES for several numerical schemes and ∆/h-ratios.

The fifth question is which subgrid-terms in the energy equation are impor-
tant and how they have to be modelled. Compressible LES does not require
the modelling of the turbulent stress tensor only, but also the modelling of the
subgrid-terms in the energy equation. It is expected that subgrid-terms in the
energy equation are negligible at low Mach number, but become more important
at higher Mach numbers. Furthermore, in recent studies of compressible LES
not all relevant subgrid-terms in the energy equation have been taken into ac-
count. Models for these subgrid-terms will be formulated and tested in LES of
the mixing layer at M = 0.2, 0.6 and 1.2 (chapter 7).

With respect to the second aim, the physical phenomena in the mixing layer
at high Mach numbers, we will focus on two research questions. First, we will
discuss the shocks that occur in the supersonic mixing layer at M = 1.2 (chap-
ter 8). Shocks in numerical simulations of the three-dimensional mixing layer
have not been observed before and only very limited experimental information is
available. For this reason, we will study the physical nature and origin of these
shocks. Furthermore, the numerical treatment of shocks in a turbulent flow is an
important problem. The numerical scheme has to be able to accurately represent
the turbulent motions and the shock-waves simultaneously. Both requirements
are satisfied by the numerical scheme we present in chapter 8.

The reason of mixing layer growth rate reduction with increasing Mach num-
ber is the second question to be answered regarding the physical processes in
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the compressible mixing layer (chapter 9). The assumption of dilatation dissi-
pation due to shocks is essential in the explanations given in literature for the
effect of Mach number on the growth rate. From a comparison of DNS at several
Mach numbers, we will show that dilatation dissipation cannot cause the growth
rate reduction. Furthermore, we will present a simple algebraic model based on
pressure fluctuations, which is able to give quantitative predictions of the Mach
number effect on the growth rate.

We finally summarize the contents of this thesis. The governing equations
in DNS and LES and their numerical discretizations are formulated in chapter
2. In chapter 3 the subgrid-models for the turbulent stress tensor are presented.
Realizability conditions for the turbulent stress tensor are derived in chapter 4.
Actual tests of LES for the compressible mixing layer are conducted in chapters
5 to 7. In chapter 5 DNS and LES are performed for the mixing layer at M = 0.2
in order to test the subgrid-models for the turbulent stress tensor. The role of
numerical errors is investigated in chapter 6. Compressible subgrid-modelling
is the subject of chapter 7, where models for the subgrid-terms in the energy
equation are formulated and tested for M = 0.2 and M = 0.6. The following
two chapters concern physical phenomena in the compressible mixing layer. The
shocks in DNS of the supersonic mixing layer at M = 1.2 are studied in chapter 8,
whereas the effect of Mach number on the shear layer growth and the turbulent
statistics is investigated in chapter 9. Conclusions and recommendations for
future research are presented in chapter 10.
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Chapter 2

Governing equations in DNS

and LES

In the first section of this chapter the Navier-Stokes equations are presented.
They describe the motion of compressible flow and are the governing equations
in a DNS. LES employs the filtered Navier-Stokes equations, formulated in section
2. The modelling of the subgrid-terms in these equations is postponed until the
following chapters. In section 3 the numerical techniques used in DNS and LES
are presented, including a new fourth-order accurate scheme.

2.1 The Navier-Stokes equations

The Navier-Stokes equations, which represent conservation of mass, momentum
and energy1, read

∂tρ + ∂j(ρuj) = 0, (2.1)

∂t(ρui) + ∂j(ρuiuj) + ∂ip − ∂jσij = 0 (i = 1, 2, 3), (2.2)

∂te + ∂j((e + p)uj) − ∂j(σijui) + ∂jqj = 0, (2.3)

where the symbols ∂t and ∂j denote the partial differential operators ∂/∂t and
∂/∂xj respectively and the summation convention for repeated indices is used.
The independent variables t and xj represent time and the spatial coordinates,
respectively. The velocity vector is denoted by u, while ρ is the density and p
the pressure. Moreover, e is the total energy density

e = E(ρ,u, p) =
p

γ − 1
+

1

2
ρuiui. (2.4)

1In contrast with many textbooks on fluid dynamics, where the momentum equation is called
the Navier-Stokes equation, we call the set of conservation laws the Navier-Stokes equations.
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The viscous stress tensor σ is based on the temperature T and velocity vector u,

σij = Fij(u, T ) =
µ(T )

Re
Sij(u) (i, j = 1, 2, 3), (2.5)

where
Sij(u) = ∂jui + ∂iuj − 2

3δij∂kuk (i, j = 1, 2, 3) (2.6)

is the strain rate tensor. The tensor δij is the Kronecker delta, defined as δij = 1
if i = j and δij = 0 if i 6= j. For air the dynamic viscosity µ(T ) is in good
approximation given by Sutherland’s law,

µ(T ) = T
3
2

1 + C

T + C
. (2.7)

In addition q represents the heat flux vector, given by

qj = Qj(T ) = − µ(T )

(γ − 1)RePrM2
∂jT (j = 1, 2, 3). (2.8)

The temperature T is related to the density and the pressure by the ideal gas law

T = G(ρ, p) = γM2 p

ρ
. (2.9)

These equations have been made dimensionless by introducing a reference
length LR, velocity uR, density ρR, temperature TR and viscosity µR. In addition
γ, the ratio of the specific heats CP and CV , and the Prandtl number Pr are
given the values γ = 1.4 and Pr = 1, while we use C = 0.4, which corresponds to
a reference temperature of 276K. The values of the Reynolds number (1.1) and
the reference Mach number

M = uR/aR, (2.10)

where aR is the reference value for the speed of sound, are given for each case
separately. For the temporal mixing layer, LR is half the initial vorticity thick-
ness, whereas the other reference values are the upper stream values. Initial and
boundary conditions for the mixing layer have been described in section 1.2.

The terms in the Navier-Stokes equations (2.1-2.3) contain the time derivative
operator ∂t or the spatial derivative operator ∂j. With respect to the terms con-
taining spatial derivatives, we distinguish between convective and viscous terms.
Viscous terms are those containing the viscous stress tensor σij or the heat-flux
qj, whereas the other terms are called convective.
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filter filter function G(x, ξ) Fourier transform G∗(k)

top-hat

{
1

∆3 if |xi − ξi| < ∆i/2,
0 otherwise.

∏3
i=1

sin(∆iki/2)
∆iki/2

Gaussian ( 6
π∆2 )

3
2 e

−6(
(x1−ξ1)2

∆2
1

+
(x2−ξ2)2

∆2
2

+
(x3−ξ3)2

∆2
3

)
e−(∆2

1k2
1+∆2

2k2
2+∆2

3k2
3)/24

spectral cut-off
∏3

i=1
sin(kc(xi−ξi))

π(xi−ξi)
with kc = π

∆i

{
1 if |ki| < kc,
0 otherwise.

Table 2.1: Filter functions in physical and spectral space. The summation convention
is not used.

2.2 The filtering approach

In the Large-Eddy Simulation of turbulent flow, any flow variable f is decomposed
in a large-scale contribution f and a small-scale contribution f ′, i.e. f = f + f ′.
The filtered part f is defined as follows:

f(x) =

∫

Ω
G(x, ξ)f(ξ)dξ, (2.11)

where x and ξ are vectors in the flow domain Ω. The filter function G depends
on the parameter ∆, called the filter width, and satisfies the condition

∫

Ω
G(x, ξ)dξ = 1 (2.12)

for every x in Ω. For compressible flows, Favre (1986) introduced a related filter
operation,

f̃ =
ρf

ρ̄
, (2.13)

which leads to the decomposition f = f̃ + f ′′.
Typical filters commonly used in Large-Eddy simulation, the top-hat, Gaus-

sian and spectral cut-off filter, are listed in table 2.1. The symbol ∆i denotes the
filter width in the i-direction, whereas ∆ is defined as

∆ = (∆1∆2∆3)
1/3. (2.14)
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For constant ∆i, the filter functions in table 2.1 can be written as G(x−ξ). In this
case the filter operation is a convolution integral. It is linear and commutes with
partial derivatives (Geurts et al. 1994, Ghosal & Moin 1995). The corresponding
Favre filter is also linear,but does not commute with partial derivatives. If the
filter operation is a convolution integral, the filtering can be performed in spectral
space as follows:

ū∗

i (k) = G∗(k)u∗

i (k), (2.15)

where k is the wave vector, u∗

i and ū∗

i are the Fourier transforms of ui and ūi,
and G∗ is the Fourier transform of G with respect to the vector x − ξ.

The filtered Navier-Stokes equations are valid when the ’bar-filter’ is any
linear operator that commutes with the partial differential operators ∂t and ∂j .
These equations are obtained if the ’bar’-filter is applied to the Navier-Stokes
equations and the filtered energy equation is rewritten (Vreman et al. 1995a):

∂tρ̄ + ∂j(ρ̄ũj) = 0, (2.16)

∂t(ρ̄ũi) + ∂j(ρ̄ũiũj) + ∂ip̄ − ∂j σ̆ij = −∂j(ρ̄τij)

+∂j(σ̄ij − σ̆ij), (2.17)

∂tĕ + ∂j((ĕ + p̄)ũj) − ∂j(σ̆ijũi) + ∂j q̆j = −α1 − α2 − α3 + α4

+α5 + α6. (2.18)

The basic filtered flow variables are the filtered density ρ̄, the filtered pressure
p̄ and the Favre filtered velocity vector ũ. The filtered temperature is obtained
Favre-filtering the ideal gas law,

T̃ = G(ρ̄, p̄). (2.19)

Other quantities are functions of these filtered variables,

ĕ = E(ρ̄, ũ, p̄), (2.20)

σ̆ij = Fij(ũ, T̃ ), (2.21)

q̆j = Qj(T̃ ). (2.22)

We have written the equations (2.16-2.18) such that the left-hand sides are the
Navier-Stokes equations (2.1-2.3) expressed in the filtered variables ρ̄, ũi and p̄.

The right-hand sides of (2.16-2.18) contain the so-called subgrid-terms, which
represent the effect of the unresolved scales. Unlike the terms at the left-hand
sides, these terms cannot be expressed in the filtered flow variables. Since we
use Favre filtered velocities, no subgrid-terms appear in the filtered continuity
equation. The filtered momentum equation contains two subgrid-terms. The
turbulent stress tensor,

ρ̄τij = ρuiuj − ρuiρuj/ρ = ρ(ũiuj − ũiũj), (2.23)
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results from the nonlinearity of the convective term, whereas the second term in
the filtered momentum equation results from the nonlinearity of the viscous term
and the fact that the Favre filter and partial derivatives do not commute. The
second term is always neglected in high Reynolds number flows. A priori tests
confirm that it is an order of magnitude smaller than the first term (Vreman et

al. 1995a; see also section 7.1).
The subgrid-terms in the energy equation are defined as:

α1 = ũi∂j(ρ̄τij) (2.24)

α2 = ∂j(puj − p̄ũj)/(γ − 1), (2.25)

α3 = p∂juj − p̄∂jũj , (2.26)

α4 = σij∂jui − σ̄ij∂j ũi (2.27)

α5 = ∂j(σ̄ijũi − σ̆ijũi) (2.28)

α6 = ∂j(q̄j − q̆j). (2.29)

The term α1 is the turbulent stress on the scalar level. It represents the kinetic
energy transfer from resolved to subgrid scales. Furthermore, α2 is the pressure-
velocity subgrid-term, representing the effect of the subgrid turbulence on the
conduction of heat in the resolved scales. The pressure-dilatation α3 is purely a
compressibility effect, since it vanishes if the flow is divergence free with constant
density. The subgrid-scale turbulent dissipation rate α4 is the amount subgrid
kinetic energy converted into internal energy by viscous dissipation. The last two
terms, α5 and α6, are created by the nonlinearities in the viscous stress and heat
flux, respectively. Like ∂j(σ̄ij − σ̆ij) in the momentum equations, these two terms
are small compared to the other subgrid-terms (see section 7.1).

The filtered energy equation describes the evolution of ĕ, the resolved total
energy, which is the sum of the filtered internal energy (p̄/(γ−1)) and the resolved
kinetic energy (1

2 ρ̄ũiũi). The resolved kinetic energy equation is obtained by
multiplication of (2.17) with ũi and contains the subgrid-terms −α1 and ũi∂j(σ̄ij−
σ̆ij). Hence, the filtered internal energy equation, obtained by subtracting the
resolved kinetic energy equation from (2.18) does not contain α1, while α5 is
modified.

The subgrid-terms contain information from the unfiltered field. Subgrid-
models have to be included for these terms in order to express the filtered Navier-
Stokes equations in filtered variables only. The turbulent stress tensor τij is
the only subgrid-term in incompressible flow. For this reason, we expect that
compressible LES at low Mach numbers primarily requires the modelling of τij.
The modelling of this tensor and related aspects are addressed in chapters 3-6.
We expect the subgrid-terms in the energy equation to become more important
if the Mach number is increased. The modelling of these terms is addressed in
chapter 7.
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convective terms viscous terms

A D1 weighted second-order D2 second-order
A’ D′

1 second-order D2 second-order
B D3 weighted fourth-order D2 second-order
B’ D′

3 fourth-order D2 second-order
C D4 spectral D4 spectral
D D5 third-order upwind D2 second-order

Table 2.2: The numerical methods A, A’, B, B’, C and D.

2.3 Numerical schemes

In this section we present the numerical algorithms used to solve the Navier-
Stokes equations (in DNS) and the filtered Navier-Stokes equations (in LES).
The equations are discretized on a uniform rectangular grid and the grid size
in the xi-direction is denoted by hi. In DNS, all relevant scales present in the
turbulent flow have to be represented on the grid, consequently, the grid size
in DNS is determined by the smallest turbulent length scale, the Kolmogorov
dissipation scale. The smallest resolved scale in LES is the filter width ∆, which
determines the grid size. Usually hi is chosen equal to ∆i or 1

2∆i. The optimal
choice of the ratio ∆i/hi will be discussed in chapter 6. In the following we turn
to the discretization of the temporal and spatial derivatives respectively.

The time stepping method which we adopt is an explicit four-stage compact-
storage Runge-Kutta method. When we consider the scalar differential equation
du/dt = f(u), this Runge-Kutta method performs within one time step δt,

u(j) = u(0) + βjδtf(u(j−1)), (j = 1, 2, 3, 4) (2.30)

with u(0) = u(t) and u(t + δt) = u(4). With the coefficients β1 = 1/4, β2 = 1/3,
β3 = 1/2 and β4 = 1 this yields a second-order accurate time integration method
(Jameson 1983). In Large-Eddy Simulations with explicit methods truncation
errors resulting from the spatial discretization method appear to be more impor-
tant than truncation errors resulting from the discretization in time. The reason
is that the time step determined by the stability restriction of the numerical
scheme is considerably smaller than the shortest turbulent time-scale, which is
the turn-over time of eddies of the size ∆.

Table 2.2 presents six different methods for the discretization of the spatial
derivatives. The table distinguishes between convective and viscous terms. The
operators Dj in the table refer to the numerical approximation of the ∂1-operator
for the corresponding method. The ∂2 and ∂3-operators are treated by analogy to
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the ∂1-operator. Subgrid-terms are discretized with the same order of accuracy as
the viscous terms. In particular the divergences of the turbulent stress tensor are
approximated with the discretization method for the divergences of the viscous
stress tensor. In the following the methods A, A’, B, B’,C and D are described
in more detail for uniform grids.

Method A is a robust second-order finite volume method, which can easily be
formulated for non-uniform grids as well (Kuerten et al. 1993). The discretization
for the convective terms is the cell vertex trapezoidal rule, which is a weighted
second-order central difference. In vertex (i, j, k) the corresponding operator D1

for a function f is defined as

(D1f)i,j,k = (si+1,j,k − si−1,j,k)/(2h1) (2.31)

with si,j,k = (gi,j−1,k + 2gi,j,k + gi,j+1,k)/4

with gi,j,k = (fi,j,k−1 + 2fi,j,k + fi,j,k+1)/4.

The viscous terms contain second-order derivatives. In method A the viscous
stress tensor σij and heat flux qj are calculated in centres of cells. In centre
(i + 1

2 , j + 1
2 , k + 1

2 ) the corresponding discretization D2f has the form

(D2f)
i+

1
2 ,j+

1
2 ,k+

1
2

= (s
i+1,j+

1
2 ,k+

1
2
− s

i,j+
1
2 ,k+

1
2
)/h1 (2.32)

with s
i,j+

1
2 ,k+

1
2

= (fi,j,k + fi,j+1,k + fi,j,k+1 + fi,j+1,k+1)/4.

The divergences of the viscous stress tensor and heat flux are subsequently calcu-
lated with the same discretization rule applied to control volumes centred around
vertices (i, j, k). Method A is robust with respect to odd-even decoupling. This
is illustrated if we consider a function f with fi+1,j,k = −fi,j,k, called a π-wave
(or 2h-wave) in the x1-direction. The scheme for the viscous terms as described
above dissipates such π-waves. Moreover, the discretization of the convective
terms with D1 is such that π-waves in the x2- and x3-directions do not appear in
D1f . The standard second-order central difference (labelled as D′

1) is obtained
if s in equation (2.31) is replaced by f . In that case π-waves in the x2- and
x3-directions persist in D1f . This argument illuminates why this finite volume
method is more robust than the standard second-order central difference and why
no artificial dissipation is needed to prevent numerical instability in the present
application. In method A’ the discretization for the convective terms is the stan-
dard second-order central difference, whereas the viscous terms are discretized as
in method A.

Using this knowledge we constructed a new fourth-order accurate method
which is more robust than the standard five-point fourth-order discretization.
Method B employs this discretization for the convective terms, while the viscous
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terms are still treated as in method A. The corresponding expression for D3f has
the following form:

(D3f)i,j,k = (−si+2,j,k + 8si+1,j,k − 8si−1,j,k + si−2,j,k)/(12h1) (2.33)

with si,j,k = (−gi,j−2,k + 4gi,j−1,k + 10gi,j,k + 4gi,j+1,k − gi,j+2,k)/16

with gi,j,k = (−fi,j,k−2 + 4fi,j,k−1 + 10fi,j,k + 4fi,j,k+1 − fi,j,k+2)/16.

This scheme is conservative, since it is a weighted central difference. The co-
efficients in the definition for gi,j,k are chosen such that gi,j,k is a fourth order
accurate approximation to fi,j,k and π-waves in the x3-direction give no contribu-
tions to gi,j,k. The definition for si,j,k has the same properties with respect to the
x2-direction. Consequently, this method is more robust with respect to odd-even
decoupling than the standard five-points fourth-order central difference (labelled
as D′

3), which is recovered if s in equation (2.33) is replaced by f . The latter
discretization is used for the convective term in method B’, whereas the viscous
terms in B’ are discretized as in method B. For convenience, we refer to meth-
ods B and B’ as fourth-order methods, but we remark that the formal spatial
accuracy of the scheme is only second-order due to the treatment of the viscous
terms. However, since the instabilities in the mixing layer are convective insta-
bilities, the convective terms play a more important role than the viscous terms,
and, for this reason it is expected that a more accurate treatment of only the con-
vective terms is sufficient in order to obtain a more accurate method. Another
example of numerical simulations in which the convective terms are treated with
a fourth-order, while the viscous terms are treated with a second-order accurate
scheme, is found in Normand & Lesieur (1992).

Method C is a pseudo-spectral scheme for the convective and viscous terms.
Derivatives in the periodic x1- and x3-directions are evaluated using discrete
Fourier-transforms. Free-slip boundaries are imposed in the x2-direction, which
implies that a flow variable is symmetric or anti-symmetric at these boundaries.
To evaluate derivatives in the x2-direction, discrete cosine and sine expansions
are employed for the symmetric (ρ̄, ũ1, ũ3, ĕ) and anti-symmetric variables (ũ2),
respectively. This spectral method does not dissipate π-waves, which leads to
contributions to the so-called ’odd ball’ wavenumber. As in Sandham & Reynolds
(1989), the odd ball component (π-wave) is explicitly removed at each stage
within a time step to prevent numerical instability.

Finally, method D is a shock-capturing method to be used in supersonic flow
calculations (chapter 8). The convective terms are discretized with the third-
order accurate MUSCL-scheme, fully described by Van der Burg (1993), whereas
the viscous terms are treated with the second-order scheme described above.
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Chapter 3

Subgrid-models for the

turbulent stress tensor

The turbulent stress tensor τij is the most important subgrid-term in LES.
Much effort has been put into the development of good subgrid-models (Moin
& Jimenez 1993) and, consequently, a large number of subgrid-models exist. In
this chapter we consider six subgrid-models for this tensor: the Smagorinsky
model (Smagorinsky 1963), the similarity model (Bardina et al. 1984; Liu et al.

1994), the gradient model (Clark et al. 1979; Liu et al. 1994), the dynamic eddy-
viscosity model (Germano 1992), the dynamic mixed model (Zang et al. 1993;
Vreman et al. 1994b) and the dynamic Clark model (Vreman et al. 1995c). These
models are important representatives of the available subgrid-models, although
we have restricted this study to models which do not require the solution of an
additional differential equation (Moin & Jimenez 1993).

The first two sections of this chapter1 contain the formulations of these six
subgrid-models and the third section is devoted to a problem caused by one of the
models. The Smagorinsky, similarity and gradient models, to be called basic mod-
els, are formulated in section 1. The dynamic procedure is explained in section 2.
The procedure is based on the Germano identity, which is a relation between tur-
bulent stresses at different filter levels. Section 2 presents a generalised Germano
identity, applicable to arbitrary nonlinear functions. Furthermore, we formulate
the three dynamic models, formed from the basic models in combination with
the dynamic procedure introduced by Germano (1992). In this section we also
report and present a solution to a specific problem which arises if top-hat filters
are used in the dynamic procedure. Section 3 is devoted to a theoretical analysis
of the gradient model, since actual simulations indicate that this model has bad
stability properties. The nature of the instability is explained from this analysis,

1This chapter is based on the papers Vreman et al. 1994bf and 1995c.
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which is performed for a model equation in one dimension. The conclusions are
summarized in section 4.

3.1 Basic models

In this section we present three models for the turbulent stress tensor ρ̄τij : the
Smagorinsky, similarity and gradient model. The Smagorinsky model is an eddy-
viscosity model, unlike the similarity and gradient model. In each case the model
is denoted by mij .

3.1.1 The Smagorinsky model

The first model is the well-known Smagorinsky model (Smagorinsky 1963; Rogallo
& Moin 1984), given by

mij = −ρ̄C2
S∆2|S(ũ)|Sij(ũ) with |S(ũ)|2 = 1

2Sij(ũ)Sij(ũ), (3.1)

where Sij is the strain rate defined by equation (2.6). With respect to the
Smagorinsky constant CS several values have been proposed: e.g. 0.2 in isotropic
turbulence (Deardorff 1971) and 0.1 in turbulent channel flow (Deardorff 1970).
With the use of power laws for the shape of the energy spectrum, Schumann
(1991) suggests CS = 0.17. This eddy-viscosity model formally models the
anisotropic part of the tensor τij only, which is defined as:

ρ̄τa
ij = ρ̄τij − 2

3 ρ̄k, (3.2)

with k = 1
2τii. The isotropic part of the tensor is usually not modelled, but

incorporated in the filtered pressure. This issue will be further addressed in
chapter 4. The major short-coming of the Smagorinsky model is its excessive
dissipation in laminar regions with mean shear, because Sij is large in regions
with mean shear (Germano et al. 1991). Furthermore, the correlation between
the Smagorinsky model and the actual turbulent stress is quite low (about 0.3 in
several flows). The similarity and gradient model, described below, do not suffer
from excessive dissipation in laminar regimes and correlate much better with the
actual turbulent stress (0.6 to 0.9 in several flows (Liu et al. 1994, Vreman et al.

1995a)).

3.1.2 The similarity model

The similarity model, formulated by Bardina et al. (1984) and revisited by Liu
et al. (1994), is not of the eddy-viscosity type. It is based on the assumption
that the velocities at different levels give rise to turbulent stresses with similar
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structures. More specifically, the definition of ρτij in terms of the unfiltered
variables ρ and ρui is applied to the filtered variables ρ and ρui. Thus a tensor
mij is defined,

mij = ρuiρuj/ρ − ρuiρuj/ρ = ρũiũj − ρũiρũj/ρ, (3.3)

which is used as a model for ρτij. In contrast to ρτij, the tensor mij can be
calculated in a Large-Eddy Simulation, since it is fully expressed in the filtered
variables.

The correlation between the similarity model and the exact turbulent stress
is relatively high. This indicates that the similarity model predicts important
structures of the turbulent stress at the right locations. However, the magnitude
of the turbulent stress is less accurately predicted. The definition of the similarity
model implies that the model only takes into account the contribution of the
filtered variables to the turbulent stress. Therefore, the similarity model does
generally not overestimate the turbulent stress, but rather underestimates them,
in particular in the turbulent regime. Hence, in laminar regions this model is
not expected to be too dissipative, unlike the Smagorinsky model. In turbulent
regions, however, the dissipation of small scales by the similarity model may be
insufficient.

3.1.3 The gradient model

In the following we will derive the gradient model mij for ρ̄τij using Taylor ex-
pansions of the filtered velocity. Our procedure is slightly different from the
procedure followed by Clark et al. (1979). Clark et al. decompose the turbulent
stress into three parts, the so-called Leonard, cross and Reynolds components,
and apply the expansions to each component separately. We directly apply the
expansion to the total turbulent stress. Furthermore, we present the formulation
for the compressible turbulent stress tensor, thus generalizing the derivation by
Clark et al..

For the top-hat filter f̄ is defined as:

f(x) =
1

∆1∆2∆3

∫ 1
2∆3

−
1
2∆3

∫ 1
2∆2

−
1
2∆2

∫ 1
2∆1

−
1
2∆1

f(x + y)dy. (3.4)

The function f(x+y) is expanded as a Taylor series around x, and after evaluation
of the integral we obtain:

f = f + 1
24∆2

k∂
2
kf + O(∆4). (3.5)
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The same formula holds for Gaussian filters (Love 1980). We use this formula to
rewrite the turbulent stress tensor:

ρτij = ρuiuj − ρuiρuj/ρ

= ρuiuj + 1
24∆2

k∂
2
k(ρuiuj)

−(ρui + 1
24∆2

k∂
2
k(ρui))(ρuj + 1

24∆2
k∂

2
k(ρuj))/(ρ + 1

24∆2
k∂

2
kρ)

+O(∆4)

= 1
12∆2

kρ(∂kui)(∂kuj) + O(∆4), (3.6)

where we used the relation

1/(ρ + 1
24∆2

k∂
2
kρ) =

1

ρ
− 1

24ρ2
∆2

k∂
2
kρ + O(∆4). (3.7)

The next step is to express equation (3.6) into filtered variables. Using equation
(3.7), the Favre-filtered velocity can be written as

ũi = ρui/ρ

= (ρui + 1
24∆2

k∂
2
k(ρui))/(ρ + 1

24∆2
k∂

2
kρ) + O(∆4)

= ui + 1
24∆2

k∂
2
kui +

1

12ρ
∆2

k(∂kρ)(∂kui) + O(∆4) (3.8)

We observe that for both the bar- and Favre filter, unfiltered and filtered variables
differ by a term of the order O(∆2):

ρ = ρ + O(∆2), (3.9)

ui = ũi + O(∆2). (3.10)

Substituting expressions (3.9) and (3.10) into (3.6) yields:

ρτij = 1
12∆2

kρ(∂kũi)(∂kũj) + O(∆4). (3.11)

The first term on the right-hand side is referred to as the ’gradient’ model,

mij = 1
12∆2

kρ(∂kũi)(∂kũj). (3.12)

Observe that the expansion is mathematically correct provided the variables can
be differentiated sufficiently often, but for rapidly fluctuating variables the O(∆4)
term may not be small. The gradient model can also be derived by not expanding
the turbulent stress itself, but the similarity model of the turbulent stress (Vreman
et al. 1995c). In the latter derivation only Taylor expansions of the filtered

quantities ρ and ũi are employed, which are varying more smoothly over lengths
of O(∆) than the unfiltered variables used in (3.6).
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Simulations with the gradient model appear to be unstable and grid-refinement
with respect to time or space does not prevent, but rather stimulate the growth of
the instability (Vreman et al. 1995c). The character of this instability is analysed
in section 3.3. To overcome this instability, the model can be supplied with a
’limiter’ which prevents energy backscatter (Liu et al. 1994). A simple procedure
for such a limiter is to represent the turbulent stress τij in the filtered equations
by cmij, i.e. the gradient model multiplied with a function c, which is given by:

c =

{
1 if mij∂j ũi ≤ 0
0 otherwise.

(3.13)

After this substitution the subgrid-model is ensured to dissipate kinetic energy
of the resolved scales to subgrid scales. The simulation with the gradient model
performed in chapter 5 adopts such a limiter, but unfortunately turns out to be
relatively inaccurate.

Another way to overcome the instability is to add an eddy-viscosity model
to the gradient model. Since Clark et al. (1979) added the Smagorinsky eddy-
viscosity, the sum of the gradient and Smagorinsky model is called the Clark
model. The Smagorinsky part in the Clark model is thus considered to act as a
model for the rest-term in (3.11). However, like the Smagorinsky model itself,
the Clark model is excessively dissipative in the transitional regime.

Hence, to stabilize the gradient model with either a limiter or the Smagorinsky
model leads to inaccurate simulations. A better way to stabilize the gradient
model is provided by the dynamic procedure, which yields the dynamic Clark
model, to be presented in the next section.

3.2 Dynamic models

Three dynamic models for the turbulent stress tensor ρ̄τij will be presented: the
dynamic eddy-viscosity, dynamic mixed and dynamic Clark model. The dynamic
eddy-viscosity model (Germano 1992) is the Smagorinsky model in which the
model constant is replaced by a coefficient which depends on the local turbulent
structure of the flow. The dynamic eddy-viscosity model overcomes several short-
comings of the Smagorinsky model, e.g. the excessive dissipation in laminar
regions. The local value of the coefficient is obtained by substitution of the
Smagorinsky model into the Germano identity, which is a relation between the
turbulent stress tensor at several filter levels. The dynamic eddy-viscosity model
has been successfully applied to LES of transitional channel flow (Germano et al.

1991) and to a number of other flows as well (Moin & Jimenez 1993).
In this section we present a generalised form of the Germano identity for a

subgrid-term resulting from the filtering of an arbitrary nonlinear function. In
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addition to the formulation of the dynamic eddy-viscosity model, we formulate
the dynamic mixed and dynamic Clark model, in which the dynamic procedure is
applied to the mixed and Clark model respectively. The mixed model is the sum
of the similarity and Smagorinsky model, whereas the Clark model is the sum of
the gradient and Smagorinsky model. The mixed and Clark model suffer from
similar short-comings as the Smagorinsky model itself. These short-comings can
be removed by applying the dynamic procedure.

3.2.1 The generalised Germano identity

We define the subgrid-term corresponding to an arbitrary nonlinear function or
operator f(w), where w is a vector function of space and time, as follows:

τf = f(w) − f(w). (3.14)

We call τf the subgrid-term on the F -level, where the bar denotes the basic filter
operation. Apart from the grid-filter level (F -level), denoted by the bar-filter
corresponding with the filter width ∆, Germano (1992) introduced a test-filter
(at the G-level), which is denoted by the hat (̂.) and corresponds with the filter
width 2∆. The consecutive application of these two filters, resulting in e.g. ρ̂,
defines a filter on the ’FG-level’ with which a filter width κ∆ can be associated.
The value of κ equals 2 for the spectral cut-off filter (Germano 1991) and

√
5 for

Gaussian filters (Germano 1992). For spectral cut-off and Gaussian filters, κ can
be determined exactly, since the consecutive application of two of these filters
yields a filter function of the same type. However, the consecutive application of
two top-hat filters does not yield a top-hat filter. For top-hat filters an optimal
value κ =

√
5 can be derived as shown in the next section. The subgrid-term on

the FG-level reads

Tf = ̂f(w) − f( ̂̄w) (3.15)

The following identity can be derived between the subgrid-terms at the FG- and
the F -level

Tf − τ̂f = Lf , (3.16)

where the right-hand side Lf can be explicitly calculated from the variable w̄ on
the F -level,

Lf = f̂(w) − f(ŵ). (3.17)

The terms at the left-hand side of the generalised Germano identity (3.16) cannot
be calculated from the variables on the F -level.

This generalised identity reduces to the Germano identity for the turbulent
stress tensor in the case

f(w) = ρuiuj with w = (ρ,u). (3.18)
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In this case identity (3.16) is equivalent to

ρ̂Tij − ρ̂τij = Lij , (3.19)

where τij is the turbulent stress tensor and the other terms are given by

ρ̂Tij = ρ̂uiuj − ρ̂uiρ̂uj/ρ̂, (3.20)

Lij = (ρuiρuj/ρ)̂ − ρ̂uiρ̂uj/ρ̂. (3.21)

The notation (.)̂ indicates that the hat-filter is applied to the expression between
the brackets. It is used in conjunction with the identically defined notation (̂.)
for convenience in the exposure. The terms at the left-hand side of the Germano
identity (3.19) are the turbulent stress tensor on the FG-level and the turbulent
stress tensor on the F -level filtered with the test-filter, respectively. The tensor
Lij can explicitly be calculated from the variables on the F -level, ρ and ρu. The
three dynamic models for the turbulent stress tensor in the following are obtained
by substituting the corresponding base models into the Germano identity.

3.2.2 The dynamic eddy-viscosity model

The dynamic eddy-viscosity model (Germano 1992) adopts Smagorinsky’s eddy-
viscosity formulation, but the square of the Smagorinsky constant CS is replaced
by a coefficient Cd:

mij = −ρ̄Cd∆
2|S(ũ)|Sij(ũ). (3.22)

The coefficient Cd is dynamically adjusted to the local structure of the flow in the
following way. The subgrid-model (3.22) is substituted into the Germano identity,
which means that expressions for Tij and τij are obtained by formulating the
subgrid-model in FG-filtered quantities and F -filtered quantities, respectively.
This yields

CdMij = Lij, (3.23)

with
Mij = −ρ̂(κ∆)2|S(v)|Sij(v) + (ρ∆2|S(ũ)|Sij(ũ))̂ . (3.24)

The symbol Sij(v) represents the strain rate based on the Favre-filtered velocity

on the FG-level (vi = ρ̂ui/ρ̂) and |S(v)|2 = 1
2S2

ij(v).
The symmetric tensor equation (3.23) represents a system of six equations for

the single unknown Cd. Hence, a least square approach (Lilly 1992) is followed
to calculate the model coefficient,

Cd =
< MijLij >

< MijMij >
. (3.25)
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Notice that mij formally models the anisotropic part of the turbulent stress.
Therefore the model should be substituted in the anisotropic part of the Germano
identity. However, substitution in the anisotropic part of the identity leads to
the same coefficient Cd, since MijLij = MijL

a
ij. In order to prevent numerical

instability caused by negative values of Cd, the numerator and denominator in
equation (3.25) are averaged over the homogeneous directions, which is expressed
by the symbol < . >. Furthermore, the model coefficient Cd is artificially set to
zero at locations where the right-hand side of (3.25) returns negative values.
One assumption of the formulation above is that variations of Cd on the scale
of the test-filter are small. An alternative formulation which does not require
this assumption has been proposed by Piomelli & Liu (1994). Some Large-Eddy
Simulations in this thesis have been repeated using this formulation, but no
significant differences were found.

3.2.3 The dynamic mixed model

The relatively accurate representation of the turbulent stress by the similarity
model and a proper dissipation provided by the dynamic eddy-viscosity concept
are combined in the dynamic mixed model. This model has been introduced by
Zang et al. (1993), and modified by Vreman et al. (1994b) in order to remove a
mathematical inconsistency. The dynamic mixed model employs the sum of the
similarity and Smagorinsky eddy-viscosity model as base model:

mij = ρuiρuj/ρ − ρuiρuj/ρ − ρCd∆
2|S(ũ)|Sij(ũ). (3.26)

The dynamic model coefficient Cd is obtained by substitution of this model into
the Germano identity, which yields:

Hij + CdMij = Lij , (3.27)

where the tensors Lij and Mij are defined by equations (3.21) and (3.24) and the
tensor Hij is defined as

Hij =
̂

ρ̂uiρ̂uj/ρ̂ − ̂̂
ρui

̂̂
ρuj/

̂̂
ρ − (ρuiρuj/ρ − ρuiρuj/ρ)̂ . (3.28)

The differences between the formulation proposed by Zang et al. and Vreman et

al. are related to different formulations for the model representing Tij . Zang et

al. express this term using velocities on the F -level, while Vreman et al. express
this term using velocities on the FG-level. The latter approach is mathematically
consistent with the definition of Tij and was observed to yield improved results
(Vreman et al. 1994b). By analogy with the formulation of the dynamic eddy-
viscosity model, the dynamic model coefficient is obtained with the least square
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approach:

Cd =
< Mij(Lij − Hij) >

< MijMij >
, (3.29)

which completes the formulation of the dynamic mixed model.

3.2.4 The dynamic Clark model

In section 3.1.3 we discussed two problems caused by the original Clark model. If
the Smagorinsky eddy-viscosity is used, the model is too dissipative. However, if
the eddy-viscosity part is omitted, the simulation becomes unstable. As indicated
by the analysis in the next section, this instability is caused by the model, not
by the numerical method, and can be overcome by sufficient dissipation. The
dynamic procedure provides a solution for both problems.

Hence, the dynamic Clark model (Vreman et al. 1995c) employs the Clark
model as base model:

mij = 1
12∆2

kρ(∂kũi)(∂kũj) − ρCd∆
2|S(ũ)|Sij(ũ). (3.30)

The formulation is similar to the formulation of the dynamic mixed model, the
only difference being the ’gradient’ part, which replaces the similarity part of
the dynamic mixed model. Substitution of the dynamic Clark model into the
Germano identity yields equation (3.27). In this case, however, the tensor Hij

expresses the difference of the gradient model on the FG-level and the F -level:

Hij = 1
12(κ∆k)

2ρ̂∂kvi∂kvj − ( 1
12∆2

kρ∂kũi∂kũj)̂ . (3.31)

The dynamic model coefficient Cd is obtained with the right-hand side of expres-
sion (3.29).

With respect to computational efficiency the dynamic Clark model does not
require much more work than the dynamic eddy-viscosity model, unlike the dy-
namic mixed model. The derivatives of the filtered velocity are already calculated
in order to obtain the strain rate at different filter levels. The extra work needed
is mainly due to the six filterings in equation (3.31) indicated by (.)̂ . The for-
mulation of Hij for the dynamic mixed model, however, contains much more
filtering operations, required for the evaluation of the similarity model at differ-
ent levels. Consequently, the computational cost for the dynamic mixed model
is considerably higher than for the dynamic eddy-viscosity and dynamic Clark
model.

3.2.5 The top-hat filter in the dynamic procedure

The dynamic procedure requires formulations of the subgrid-model at the F -level
and the FG-level. The F -level is associated with the filter width ∆, the G-level
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with the filter width 2∆ and the FG-level with the filter width κ∆. In this
subsection we argue that in conjunction with top-hat filters the value of κ should
not be 2 (as used for instance by Zang et al. (1993)), but rather

√
5.

We denote the original filter function by Ga with filter width a = ∆ and the
test-filter function by Gb with filter width b > a. The filter function corresponding
to the consecutive application of these two filters is denoted by H and satisfies
the following formula:

H(y) =

∫

Ω
Gb(y − z)Ga(z)dz. (3.32)

If Ga and Gb are spectral filters, H is a spectral filter as well with filter width
b, whereas if Ga and Gb are Gaussian filters, H is a Gaussian filter with filter
width

√
a2 + b2. However, the consecutive application of two top-hat filters is

not a top-hat filter; the filter function H has a trapezoidal shape. In Large-Eddy
Simulations employing the dynamical procedure with top-hat filters, the filter
width of H is usually assumed to be the same as the filter width of Gb (Zang
et al. 1993). However, this approximation cannot be very good, because the
H-filter will certainly render smoother signals than the Gb-filter, so the filter
width associated with H should be larger than b. We proceed to show how
an appropriate value for the filter width of H can be found. Since the three-
dimensional filter function is usually a product of three one-dimensional filter
functions, the analysis can be performed in one dimension. Suppose that H is
the trapezoidal filter function resulting from the consecutive application of two
one-dimensional top-hat filter functions Ga and Gb with b > a. This yields the
following expression:

H(y) =





1
ab(y + 1

2(b + a)) if −1
2(b + a) < y < −1

2(b − a),
1
b if −1

2(b − a) ≤ y ≤ 1
2(b − a),

− 1
ab(y − 1

2(b + a)) if 1
2(b − a) < y < 1

2 (b + a),
0 if |y| ≥ 1

2(b + a) .

(3.33)

We next find an optimal approximation of H by a top-hat filter function Gc,
given by

Gc(y) =

{
1
c if −1

2c < y < 1
2c,

0 if |y| ≥ 1
2c .

(3.34)

For this purpose we minimise the L2-norm of the error, which is a function of c:

δ(c) = ‖Gc − H‖ (3.35)

The choice of the L2-norm has the advantage that the error is also minimum in
spectral space, due to Parseval’s theorem. The minimum value of c will certainly
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satisfy b− a ≤ c ≤ b + a. In this range the square of the error equals (after some
calculation):

(δ(c))2 =
1

b
− a

3b2
+

b + a

ab
+

1

c
(

a

2b
+

b

2a
) +

c

2ab
(3.36)

Minimisation of the error requires

d

dc
(δ(c))2 = 0, (3.37)

which finally yields

c =
√

a2 + b2 (3.38)

It is remarkable that this relation, which represents an optimal approximation for
top-hat filters, is identical to the exact relation for Gaussian filters. Furthermore
it appears that when equation (3.38) is satisfied for top-hat filters, not only δ(c)
is minimum, but that also the second moments of Gc and H are equal:

∫ 1
2 c

−
1
2 c

y2Gc(y)dy =

∫ 1
2 (b+a)

−
1
2 (b+a)

y2H(y)dy. (3.39)

Usually the ratio between the filter width of the test and original filter is equal
to 2 (b = 2a), in which case equation (3.38) gives c =

√
5a, which corresponds to

κ =
√

5.

3.3 The unstable nature of the gradient model

Large-Eddy Simulations with the pure gradient model are unstable. Incorpora-
tion of a limiter or the Smagorinsky eddy-viscosity can lead to stable simulations,
but the results are inaccurate (Vreman et al. 1995c). However, the dynamic com-
bination of the gradient and eddy-viscosity model presented in subsection 3.2.4
results in stable and sufficiently accurate simulations. In this section we will anal-
yse the nature of the instability of the pure gradient model for a one-dimensional
model problem.

3.3.1 Analysis in one dimension

It is well-known that the Burgers equation is a simple model that describes flow
phenomena which are qualitatively similar to Navier-Stokes flows in several re-
spects. Since the Burgers equation is a one-dimensional scalar equation, mathe-
matical analysis is often possible. The equation has been the subject of several
studies of LES (Love 1980, Humi 1990). In this section we examine the Burgers
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equation supplemented with the one-dimensional version of the gradient part of
the Clark model. The linear stability of a sinusoidal profile will be investigated,
in order to gain some understanding of the instability of the gradient model en-
countered in the previous section. The connection between linear and nonlinear
stability is known for Navier-Stokes flows and has been formulated in the fol-
lowing way (Henningson & Reddy 1994). If a flow is linearly unstable then it is
nonlinearly unstable to arbitrarily small initial disturbances. On the other hand,
if a flow is linearly stable then it is nonlinearly stable, provided the initial distur-
bance is sufficiently small. The linear analysis thus provides information on the
nonlinear equation.

The Burgers equation with the gradient subgrid-model is written as:

∂tu + 1
2∂x(u2) − ν∂2

xu = −1
2η∂x(∂xu)2 + f(x), (3.40)

where ∂t and ∂x denote the time and spatial derivative respectively, u is the
one-dimensional velocity and ν the viscosity. The left-hand side of this equation
contains all terms in the standard Burgers equation. The right-hand side repre-
sents the gradient model with positive parameter η = 1

12∆2 plus a forcing term
f .

The following analysis shows that smooth solutions of equation (3.40) can
be extremely sensitive to small perturbations, leading to severe instabilities. In
particular, we consider the linear stability of a 2π-periodic, stationary solution,
U(x, t) = sin(x) on the domain [0, 2π] with periodic boundary conditions. For
η 6= 1 the forcing function f is determined by the requirement that U is a solution
of equation (3.40). We notice that no forcing is needed to ensure that U is an
exact solution for the inviscid case with η = 1. We substitute a superposition of
U and a perturbation v,

u(x, t) = U(x) + v(x, t), (3.41)

into equation (3.40) and linearize around U , omitting higher order terms in v:

∂tv + (1 − η) sin(x) ∂xv + (v + η∂2
xv) cos(x) = ν∂2

xv. (3.42)

We use the following Fourier expansion for v

v =

∞∑

k=−∞

αk(t)e
ikx, (3.43)

where i is the imaginary unit with i2 = −1. After substitution of this series into
equation (3.42) and ordering of terms, we obtain an infinite system of ordinary
differential equations for the Fourier coefficients αk:

α̇k = 1
2k(ηk − η − 1)αk−1 − k2ναk + 1

2k(ηk + η + 1)αk+1, (3.44)
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where k is a number in Z.
The instability mentioned in the previous section concerns the gradient model,

in which no eddy-viscosity is adopted, while the molecular viscosity is relatively
small. Therefore, to understand the nature of this instability for the Burgers
equation, we first analyse system (3.44) assuming ν = 0. Instead of the infinite
system, we consider a sequence of finite dimensional systems,

żn = Mnzn (3.45)

where zn is a vector containing the 2n + 1 Fourier coefficients α−n...αn and Mn

is a (2n + 1) × (2n + 1) tri-diagonal matrix:

zn =




α−n

.

.
α−1

α0

α1

.

.
αn




, Mn =




0 ln
rn . .

. . l2
r2 0 l1

0 0 0
l1 0 r2

l2 . .
. . rn

ln 0




, (3.46)

with

lk = 1
2k(ηk − η − 1), (3.47)

rk = 1
2(k − 1)(ηk + 1). (3.48)

The eigenvalues of An determine the stability of the problem. The system is
unstable if the maximum of the real parts of the eigenvalues is positive.

In the following we will consider the asymptotic behaviour for large values
of n of the maximum of the real parts of the eigenvalues of Mn. We denote the
eigenvalues of Mn by λj, whereas λmax represents an eigenvalue with

|λmax| = max|λj |. (3.49)

In the next subsection the proof is found of the following three properties:

1. if λ is an eigenvalue then − λ is an eigenvalue; (3.50)

2. |λmax| ∼ ηn2; (3.51)

3. |Im(λmax)| ≤ n − 1. (3.52)

The first point implies that λmax can be chosen such that Re(λmax) ≥ 0. Hence,
the combination of these three properties yields the asymptotic behaviour of the
maximum of the real parts of the eigenvalues:

Re(λmax) ∼ ηn2. (3.53)
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Thus we have shown that the inviscid system is linearly unstable and that the
largest real part of the eigenvalues is asymptotically proportional to n2, where n
is the number of Fourier modes taken into account.

It should be observed that the instability is severe, since the system is not
only unstable, but the growth rate of the instability is infinitely large as n → ∞.
The instability is fully due to the incorporation of the gradient model, since all
eigenvalues of the matrix Mn are purely imaginary in case the inviscid Burgers
equation without subgrid-model is considered (η = 0). In numerical simulations
the instability will grow with a finite speed, since then the number of Fourier
modes is limited by the finite grid. Moreover, expression (3.53) illustrates that
grid-refinement (with η kept constant), which corresponds to a larger n, will not
stabilize the system, but enhance the instability. Three-dimensional simulations
were observed to show features similar to this one-dimensional behaviour. Grid-
refinement in LES with the gradient model (Vreman et al. 1995c) enhanced the
instability when ∆ was kept fixed (the grid-spacing h was decreased). However,
when the filter width ∆ was reduced simultaneously with the grid-refinement, i.e.
∆/h was kept constant, the instability was not enhanced. In fact the growth rate
of the instability of the one-dimensional problem can be expressed in ∆ and the
grid-spacing h: ηn2 ∼ (∆/h)2. Consequently, the instability is not enhanced if
the ratio between ∆ and h is kept constant.

Finally, we will consider the more complicated case ν 6= 0. The linear system
in equation (3.44) now gives rise to matrices Mn which have a negative principal
diagonal. It is known that for every fixed value of n there exists an eigenvalue
arbitrarily close to the eigenvalue of the inviscid system (λmax) if ν is sufficiently
small (Chatelin 1993, (Lemma 4.3.1)). Hence for small values of ν the viscous
system for finite n is still linearly unstable. The matrix Mn is strictly diagonally
dominant if

ν > η + 1, (3.54)

while all rows except n and n+2 are already diagonally dominant if ν > η. If the
matrix is diagonally dominant, the real parts of all eigenvalues are negative and,
consequently, the system is stable. This indicates that stability can be achieved
by a sufficiently large viscosity, which does not depend on n, but only on η.
Thus, we conclude that if the gradient model is supplemented with an adequate
eddy-viscosity the instability will be removed. The original Clark model, which
indeed contains enough eddy-viscosity to avoid instabilities, is too dissipative. An
adequate eddy-viscosity formulation which stabilizes the gradient model, while
not being too dissipative, occurs in the dynamic Clark model (section 3.2.4).

36



3.3.2 The eigenvalues in the one-dimensional analysis

In this subsection the proof of the three statements in (3.50) to (3.52) concerning
the eigenvalues of the matrix Mn is given.2 The structure of the matrix Mn is
such that an eigenvalue is equal to zero or an eigenvalue of the following matrix:

An =




0 r2

l2 . .
. . rn−1

ln−1 0 rn

ln 0




. (3.55)

Consequently, to consider the eigenvalues of An is sufficient. These eigenvalues
are roots of the characteristic polynomial Pn(λ) of the matrix An:

Pn(λ) = det(λIn − An), (3.56)

where In is the n×n unity matrix. If we decompose this determinant with respect
to the last column, we obtain:

P1(λ) = λ, (3.57)

P2(λ) = λ2 − r2l2, (3.58)

Pn(λ) = λPn−1(λ) − rnlnPn−2(λ), n > 2. (3.59)

This recursive relation demonstrates that Pn(λ) = 0 implies Pn(−λ) = 0. Thus
if λ is an eigenvalue, −λ is also an eigenvalue and thus property (3.50) has been
established.

Next, we consider the statement about the asymptotic behaviour of |λmax|,
expressed in (3.51). In order to proof this statement we formulate a lower- and
upper-bound for |λmax| which are both asymptotically proportional to ηn2. An
upper-bound is obtained when the Gershgorin theory is applied to An:

|λmax| ≤ ln−1 + rn = η(n − 1)2 ∼ ηn2. (3.60)

Since |λmax| > |λi| for i = 1, .., n and λi represents one of the n roots of the
polynomial Pn(λ), the following relation provides a lower-bound for |λmax|:

|λmax| ≥ |λ1λ2...λn|
1
n = |Pn(0)| 1

n . (3.61)

The recursive relation (3.59) provides

Pn(0) = −rnlnPn−2(0), (3.62)

2Dr. R.M.J. van Damme (Department of Applied Mathematics, University of Twente) sig-
nificantly contributed to the proof of (3.51).
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with
rnln = 1

4(n − 1)n(η2(n2 − n) − η − 1) ∼ 1
4η2(n − 1)2n2. (3.63)

If n is even and the coefficient lk is non-zero for even k (rk is always non-zero),
we obtain the following estimate, using Stirling’s formula:

|λmax| ≥ |Pn(0)| 1
n ∼ ((1

4η2)
n
2 (n!)2)

1
n ≥ 1

2η(
n

e
)2 ∼ ηn2. (3.64)

The equations (3.60) and (3.64) together yield

|λmax| ∼ ηn2. (3.65)

The case for odd n is more complicated, but does not need to be considered,
since the behaviour for even n already provides sufficient information about the
system. Furthermore, the above argument alters when lk = 0 for a certain (even)
value of k. If lk = 0 the characteristic polynomial can be written as

Pn(λ) = Pk+1(λ)Qn−k+1(λ), (3.66)

where Qn−k+1(λ) represents the characteristic polynomial of the tri-diagonal ma-
trix with lower diagonal lk+1..ln and upper diagonal rk+1..rn. The maximum root
of Qn−k+1 can be estimated like in equation (3.64) and its asymptotic behaviour
is also proportional to ηn2.

Finally, we derive an upper-bound for the imaginary part of an eigenvalue λ
of An, expressed in (3.51). Denoting the corresponding eigenvector with y we
have

Any = λy. (3.67)

The matrix An can be split into a symmetric matrix Bn and an anti-symmetric
matrix Cn:

An = Bn + Cn (3.68)

with

Bn =




0 b2

b2 . .
. . bn

bn 0


 , Cn =




0 c2

−c2 . .
. . cn

−cn 0


 , (3.69)

and

bk = 1
2(rk + lk) = 1

2ηk2 − 1
2ηk + 1

4 , (3.70)

ck = 1
2(rk − lk) = 1

2k − 1
4 . (3.71)
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In the following we denote the Eucledian inner product in Cn by (·, ·) and the
complex conjugate by the superscript (∗). Next, we derive the following relation
between λ and λ∗:

λ(y,y) = (Any,y)

= (Bny,y) + (Cny,y)

= (y, BT
n y) + (y, CT

n y)

= (y, Bny) − (y, Cny)

= (y, Any) − 2(y, Cny)

= λ∗(y,y) − 2(y, Cny) (3.72)

Now we can express an upper-bound for the imaginary part of λ as:

|Im(λ)| = 1
2 |λ − λ∗| = |(y, Cny)

(y,y)
| ≤ ‖y‖ ‖Cny‖

‖y‖2
≤ ‖C‖sp, (3.73)

since ‖Cny‖ ≤ ‖Cn‖sp‖y‖, where the subscript ′sp′ denotes the spectral matrix
norm. The spectral matrix norm ‖C‖sp is defined as the square root of the
maximum of the absolute eigenvalues of the matrix CT

n Cn, which is equal to the
maximum absolute eigenvalue of Cn, since Cn is anti-symmetric. Finally, the
following result is obtained using the Gershgorin theory:

|Im(λ)| ≤ |cn−1| + |cn| = n − 1, (3.74)

which expresses an upper-bound for the imaginary parts of the eigenvalues.

3.4 Conclusions

In this chapter six subgrid-models for the turbulent stress tensor have been pre-
sented: three basic subgrid-models and three dynamic models composed of the
basic models. A comparison of simulation results obtained with these models is
found in chapter 5.

The basic subgrid-models are the Smagorinsky, similarity and gradient model.
The three dynamic models considered are the dynamic eddy-viscosity, the dy-
namic mixed and the dynamic Clark model. The dynamic models rely upon the
Germano identity for the turbulent stress tensor. We have generalised the Ger-
mano identity in order to be able to apply the procedure to other subgrid-terms
as well. Furthermore, an improved formulation of the dynamic mixed model has
been proposed. The dynamic Clark model is the gradient model supplemented
with an dynamic eddy-viscosity. It has been introduced to overcome the intrinsic
instability of the pure gradient model and the excessive dissipation of the original
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Clark model. With respect to the dynamic procedure using top-hat filters, an
optimum value for the filter width of two consecutively applied top-hat filters was
obtained. This value is different from the value that has previously been used for
top-hat filters, whereas it is identical to the exact value for Gaussian filters.

The gradient model has been considered in more detail. First, we have ex-
tended the formal derivation of the incompressible gradient model to be able to
use the model in compressible flow simulations. In order to clarify the nature
of the instability of the gradient model, the one-dimensional Burgers equation
supplemented with the gradient model has been analysed. A linear stability
analysis of a sinusoidal profile of the modified Burgers equation has been per-
formed. In the limit of vanishing viscosity, the maximum of the positive real
parts of the eigenvalues has been shown to be proportional to the square of the
number of modes, if a finite number of modes is taken into account. This shows
that the instability becomes more severe, if the resolution is increased. For an
infinite number of modes, the growth-rate of the instability is infinitely large.
The one-dimensional analysis also indicates that a sufficient amount of viscosity
can stabilize the model, independent of the number of modes. These analytical
results for the one-dimensional case are similar to the behaviour of the instability
observed in three-dimensional simulations with the gradient model.
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Chapter 4

Realizability conditions for the

turbulent stress tensor

In this chapter1 we examine the turbulent stress tensor τij in the filtering ap-
proach, defined by equation (2.23) from a theoretical point of view. The filtering
approach, which is the basis of LES, is different from the classical way to average
the Navier-Stokes equations. In the classical approach, also known as the statis-
tical approach, the equations are averaged with a statistical mean or ensemble
average (Tennekes & Lumley 1972). The turbulent stress reduces to the Reynolds
stress, which is a statistical central moment, and satisfies the so-called ’realizabil-
ity conditions’ (Du Vachat 1977; Schumann 1977). Unlike the ensemble average
in the statistical approach, the averaging operator in the filtering approach does
not satisfy the Reynolds rules for the mean (Monin & Yaglom 1971, p. 207). Al-
though for this reason the turbulent stress in the filtering approach is not equal to
the Reynolds stress, several analogies between the turbulent stress in the filtering
approach and the Reynolds stress exist. First, the turbulent stress in the filter-
ing approach satisfies the Reynolds equations, which are the partial differential
equations that can be derived for the Reynolds stress in the statistical approach
(Germano 1992). In addition to this property, which is called the averaging in-
variance of the filtered equations, Germano presents an algebraic identity for the
turbulent stress (section 3.2.1). Invariances or algebraic properties related to the
Large-Eddy Simulation technique and their applications on subgrid-modelling are
scarcely found in literature. In addition to Germano’s work, the work of Speziale
(1985) has to be mentioned, in which the Galilean invariance of subgrid-models
is discussed.

In this chapter it will be shown that the realizability conditions for the
Reynolds stress in the statistical approach are also valid for the turbulent stress

1This chapter is based on the paper Vreman et al. 1994a.
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in the filtering approach, if and only if the filter function is positive. The proof
of this statement is given in section 4.1, while in the section 4.2 the theory is
illustrated for three filters commonly used in Large-Eddy Simulation. Further-
more, in section 4.3 it is argued that a consistent subgrid-model for the turbulent
stress should satisfy the same inequalities as the turbulent stress itself. Whether
this requirement is fulfilled is investigated for several existing subgrid-models.
Moreover, it is shown that for eddy-viscosity models the realizability conditions
lead to a lower bound for the generalised turbulent kinetic energy.

For sake of transparency we use the incompressible formulation of the turbu-
lent stress tensor,

τij = uiuj − uiuj, (4.1)

The compressible case is covered when the bar filter is replaced by the Favre
filter.

4.1 Realizability conditions

The filtering approach presented in section 2.2 is different from the statistical
approach, in which the averaging operator represents the ensemble average and τij

is equal to the Reynolds stress u′

iu
′

j. Since the averaging operator is a statistical

mean, it is well-known that the tensor u′

iu
′

j is positive semidefinite (Du Vachat
1977; Schumann 1977). If the tensor τij is positive semidefinite (or ’positive’ for
convenience) then the following inequalities hold (Ortega 1987, p. 36):

τii ≥ 0 for i ∈ {1, 2, 3}, (4.2)

|τij | ≤ √
τiiτjj for i, j ∈ {1, 2, 3}, (4.3)

det(τij) ≥ 0. (4.4)

By analogy to the statistical approach we refer to these three properties as ’realiz-
ability conditions’. If the filtering approach is followed, in general τij 6= u′

iu
′

j and,
therefore, we will investigate the conditions under which τij is positive semidefi-
nite.

The turbulent stress tensor τij in Large-Eddy Simulation is preferred to be
’positive’ for a number of reasons. First, if τij is ’positive’, the generalised tur-
bulent kinetic energy formally introduced by Germano (1992),

k = (τ11 + τ22 + τ33)/2, (4.5)

is a positive quantity at each location of the flow domain for an arbitrary velocity
field. This quantity is frequently used in the theory of subgrid-modelling and is
often required to be positive. As an example, we mention the available k-equation
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models, which would become ill-defined for negative values of k. Moreover, twice
the turbulent kinetic energy is an upper bound for all components of the turbulent
stress, i.e. |τij | ≤ 2k for all i and j, which follows from the estimates given in
equation (4.3). Other analogies between the classical approach with the ensemble
average and the filtering approach exist, if τij is ’positive’. For example, as in
the classical approach, the fractions τij/

√
τiiτjj in the filtering approach can be

considered as correlation coefficients. The existence of such analogies could be
a reason why turbulence models developed for the ensemble averaged equations
can often be applied in Large-Eddy Simulation. An example is Smagorinsky’s
model (Smagorinsky 1963), which is quite similar to the classical mixing length
model by Prandtl.

In the following it will be proved that τij in LES is positive semidefinite if and
only if the filter kernel G(x, ξ) is positive for all x and ξ. As a first step, suppose
G ≥ 0. In order to prove that τij is ’positive’ for all x in the flow domain Ω, a
subset Ωx is defined, being the support of the function ξ → G(x, ξ). Moreover
Fx is the space of real functions on the domain Ωx. Since G ≥ 0, for f, g ∈ Fx

the expression

(f, g)x =

∫

Ωx

G(x, ξ)f(ξ)g(ξ)dξ (4.6)

defines an inner product on Fx (Rudin 1973, p. 292). Next, we show that the
turbulent stress can be written as an inner product. Using the definition of the
filter operator, equation (2.11), and property (2.12) yields

τij(x) = uiuj(x) − ui(x)uj(x)

= uiuj(x) − ui(x)uj(x) − uj(x)ui(x) + ui(x)uj(x)

=

∫

Ωx

G(x, ξ)ui(ξ)uj(ξ)dξ − ui(x)

∫

Ωx

G(x, ξ)uj(ξ)dξ

−uj(x)

∫

Ωx

G(x, ξ)ui(ξ)dξ + ui(x)uj(x)

∫

Ωx

G(x, ξ)dξ

=

∫

Ωx

G(x, ξ)(ui(ξ) − ui(x))(uj(ξ) − uj(x))dξ = (vx

i , vx

j )x, (4.7)

with vx

i (ξ) ≡ ui(ξ) − ui(x) defined on Ωx. In this way the tensor τij forms a
3× 3 Grammian matrix of inner products. Since such a matrix is always positive
semidefinite (Ortega 1987, p. 74), τij is positive semidefinite and satisfies the re-
alizability conditions. Remark that vx

i (ξ) is not identical to the standard velocity
fluctuation u′

i(ξ) = ui(ξ) − ui(ξ), since vx

i (ξ) also depends on x. Consequently,
expression (4.7) is not equal to u′

iu
′

j.
We proceed to show that G ≥ 0 is not only a sufficient, but also a necessary

condition for τij to be positive semidefinite. Suppose the condition G ≥ 0 is not
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fulfilled for a piecewise-continuous filter function G. Then vectors x and ξ̂ in Ω
and a neighbourhood of ξ̂, V = {ξ ∈ Ω : |ξ− ξ̂| < δ} exist, such that G(x, ξ) < 0
for all ξ ∈ V . For a function u1 on Ω with u1(ξ) 6= 0 if ξ ∈ V and u1(ξ) = 0
elsewhere, τ11(x) appears to be negative:

τ11(x) = u2
1(x) − (u1(x))2 ≤ u2

1(x) =

∫

V
G(x, ξ)(u1(ξ))2dξ < 0. (4.8)

Consequently, the tensor τij is not positive semidefinite, which completes the
proof that τij is positive semidefinite if and only if the filter function G is positive.

We finally show that the fractions τij/
√

τiiτjj in the filtering approach can be
interpreted as local statistical correlation coefficients. For a given x we can define
a local stochastic variable Ξx for the location vector ξ with probability density
function Px(ξ) = G(x, ξ) ≥ 0. Hence, the filtered velocity ūi can be interpreted
as the statistical mean Ex of the stochastic variable ui(Ξx) and the turbulent
stress tensor τij as the covariance covx(ui(Ξx)uj(Ξx)).

4.2 Filters

In the previous section we have shown that the turbulent stress tensor is positive
semidefinite if and only if the condition G ≥ 0 is fulfilled. If this is the case,
we call the corresponding filter a positive filter. In this section we consider some
of the positive and non-positive filters which frequently appear in the literature
about Large Eddy Simulation. Moreover, turbulent kinetic energies obtained with
positive and non-positive filters are compared for a fully developed turbulent flow
field.

Typical filters commonly used in Large Eddy Simulation, the top-hat, Gaus-
sian and spectral cut-off filter, have been listed in table 2.1. The top-hat and
Gaussian filters are positive, whereas the spectral cut-off is not. Hence τij is ’pos-
itive’ if the first two filters are applied, but not if the spectral cut-off is applied
to the velocity field. For compressible flows the Favre filter is used, ũi = ρui/ρ,
where ρ is the density (Erlebacher et al. 1992). In fact ũi can be written as

ũi(x) =

∫

Ω
H(x, ξ)ui(ξ)dξ (4.9)

with

H(x, ξ) =
G(x, ξ)ρ(ξ)∫

Ω G(x,η)ρ(η)dη
. (4.10)

The function H(x, ξ) is clearly a filter-function, since
∫
Ω H(x, ξ)dξ = 1. More-

over, the Favre filter is positive if the corresponding G(x, ξ) is positive. Thus,
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Figure 4.1: Contours of the generalised turbulent kinetic energy in the centre plane
of the mixing layer at t = 80 for (a) the top-hat filter, (b) the Gaussian filter and (c)
the spectral cut-off filter. Solid and dotted contours indicate positive and negative
values respectively. The contour increment is 0.04.

this filter inherits positivity from the underlying ’bar’-filter, but does in general
not commute with partial derivatives, unlike the filters listed in table 2.1.

Next the specific behaviour of the turbulent stress based on the spectral cut-
off filter is illustrated. First, as an example the sinusoidal velocity profile u1 =
sin(akcx1) with 1

2 < a < 1 is considered and the cut-off filter is applied with
cut-off wavenumber kc. Since u1 is a single Fourier mode, the filter operation is
easily performed in Fourier space. This implies

τ11 = 1
2 − 1

2 cos(2akcx1) − (1
2 − 1

2 cos(2akcx1)) = 1
2 cos(2akcx1), (4.11)
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Figure 4.2: The generalised turbulent kinetic energy averaged in the homogeneous
directions as a function of the normal coordinate (x2) for the mixing layer at t = 80.
Top-hat filter (solid), Gaussian filter (dotted) and spectral cut-off filter (dashed).

which is not positive for all x1. Consequently, for spectrally filtered fields τij

does not satisfy the realizability conditions. As a further illustration the gen-
eralised turbulent kinetic energy is calculated by filtering a turbulent velocity
field. For this purpose we use the database of a Direct Numerical Simulation of
the temporal mixing layer in three dimensions with a convective Mach number
of 0.2 (Vreman et al., 1995a). At this Mach number the flow can be regarded
as incompressible (Sandham & Reynolds, 1991). The simulation was performed
on a uniform cubic grid with grid-spacing h and 1283 grid-points. Furthermore,
an additional simulation on a 1923-grid confirmed the accuracy of the database
(see section 5.1). In the following the turbulent flow field at t = 80 is used for
the calculation of the generalised turbulent kinetic energy k, defined in equation
(4.5). We compare k obtained with the top-hat and Gaussian filter, as examples
of positive filters, to k obtained with the spectral cut-off filter. The filter width
∆, which is the same in the three filter functions, is chosen equal to 4h, which im-
plies that if a Large-Eddy Simulation of this flow is performed with grid-spacing
∆, the grid contains 323 cells. In figure 4.1 contours of k are shown in the centre
plane of the shear layer for the three filters. Moreover, k averaged in the two
homogeneous directions of the flow (< k >) is plotted as a function of the nor-
mal coordinate in figure 4.2. These figures show that the generalised turbulent
kinetic energy k is positive everywhere, if the top-hat or Gaussian filter is used.
However, if the spectral cut-off is employed, k and even < k > are negative in
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some parts of the flow.
As a conclusion, unlike the top-hat and Gaussian filters, the spectral cut-off

filter gives rise to a turbulent stress tensor which does not satisfy the realizability
conditions. This does not imply that τij becomes ill-defined for the spectral cut-
off filter. However, certain properties of τij which are true for positive filters do
not hold for the spectral cut-off. In particular the generalised turbulent kinetic
energy, k, obtained with spectrally filtered velocity fields, can locally be negative.
Similarly, the generalised turbulent dissipation rate (Germano 1992, equation
(25)),

ǫ = ν

3∑

i=1

3∑

k=1

((∂kui)2 − ∂kui
2
), (4.12)

can locally be negative if a spectral filter is used, while it is positive for positive
filters. Some consequences of these properties will be discussed in the next section.
Finally, the fact that τij based on spectrally filtered fields is not ’positive’ might
explain the large amount of backscatter for this filter when compared to positive
filters (Piomelli et al. 1990b).

4.3 Subgrid-models

The Large-Eddy Simulation approach is to close the filtered equations by replac-
ing the exact turbulent stress τij with a subgrid-model, represented by the tensor
mij . A model which shares some basic properties with the turbulent stress is
appealing from a theoretical point of view. For example, since τij is a symmet-
ric tensor, the model mij is preferred to be symmetric as well, which is true for
all existing subgrid-models. Secondly, the filtered Navier-Stokes equations are
Galilean invariant. As Speziale (1985) has argued, they should retain this prop-
erty if τij is replaced by the model mij . The observation that τij is ’positive’ for
positive filters is another basic property of the turbulent stress. Therefore, it is
reasonable to require the model mij to be ’positive’ as well, if a positive filter is
adopted. Such a requirement is not only based on theoretical, but also on prac-
tical grounds. For example, it provides a useful lower bound for the generalised
turbulent kinetic energy in case an eddy-viscosity model is adopted, as will be
shown below. In the following the three basic subgrid-models introduced in sec-
tion 3.2 are considered and the question whether they are ’positive’ for positive
filters is addressed. We also discuss the dynamic models and some other models
that occur in literature.

First consider Bardina’s scale-similarity model in the incompressible formu-
lation (Bardina et al. 1984):

mij = uiuj − uiuj. (4.13)
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This tensor is obtained if the definition of the turbulent stress τij (equation (4.1))
is applied to the filtered velocity field ui. The tensor mij is also called the re-
solved turbulent stress (Germano 1992) and is clearly ’positive’ for positive filters.
Another ’positive’ tensor is the gradient model, which reads in its incompressible
formulation (Clark et al. 1979),

mij = 1
12∆2(∇ui · ∇uj). (4.14)

This tensor is positive semidefinite since it can be interpreted as a Grammian
matrix with respect to the Eucledian inner product in R3. Notice that mij is
’positive’, even if the filter is not positive, and, consequently the use of this
model in conjunction with e.g. the spectral cut-off filter is not consistent.

The two subgrid-models discussed above are not of the eddy-viscosity type.
Next we turn to the group of eddy-viscosity models (e.g. Rogallo & Moin 1984).
The anisotropic part of the turbulent stress, τa

ij = τij − 2
3kδij , is modelled with

ma
ij = −νeSij. (4.15)

The symbol νe represents the eddy-viscosity and Sij is a short notation for the
strain-rate Sij(u) defined in (2.6). The sum of the anisotropic and isotropic parts
is formally written as

mij = −νeSij + 2
3kδij . (4.16)

An interesting result is obtained if mij is required to satisfy the realizability
conditions. This requirement implies:

m2
12 + m2

13 + m2
23 ≤ m11m22 + m11m33 + m22m33. (4.17)

Equation (4.16) is substituted in this expression, which yields

ν2
e (S2

12 + S2
13 + S2

23) ≤ ν2
e (S11S22 + S11S33 + S22S33) + 4

3k2. (4.18)

Here the property that the tensor Sij is trace-less has been employed. This
property is also used to rewrite the terms between parentheses in the right-hand
side of equation (4.18) as follows:

S11S22 + S11S33 + S22S33 = 1
2(S11 + S22 + S33)

2 − 1
2(S2

11 + S2
22 + S2

33)

= −1
2(S2

11 + S2
22 + S2

33).

Substituting this expression in equation (4.18) finally yields:

k ≥ 1
2

√
3(νe

√
S) with S = 1

2

∑

i,j

S2
ij. (4.19)
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This inequality presents a lower bound for the generalised turbulent kinetic energy
k, in the case an eddy-viscosity model is adopted in conjunction with a positive
filter.

The lower bound for k provides information on the isotropic part of the tur-
bulent stress in the eddy-viscosity formulation. In a Large Eddy Simulation of
incompressible flow the isotropic part is usually added to the filtered pressure,
resulting in a modified pressure (Rogallo & Moin 1984). In that case, the Large-
Eddy Simulation solves the modified pressure, while the (filtered) pressure itself
remains unknown, which is undesirable in applications in which the pressure is an
important quantity. The approach involving a modified pressure especially causes
problems in the Large-Eddy Simulation of compressible flows, since in the evo-
lution equations for compressible flows the pressure does not only appear in the
momentum equations, but also in the energy evolution equation and in the equa-
tion of state. For these reasons subgrid-models have been proposed that explicitly
prescribe k in order to model the isotropic part of the turbulent stress. For such
models inequality (4.19) is particularly interesting since it implies inequalities for
the model coefficients, as shown in the following part of this section.

In fact inequality (4.19) can be used to suggest a subgrid-model for k cor-
responding to a specific eddy-viscosity model. We will demonstrate this for the
Smagorinsky model, which leads to the Yoshizawa model for k. A similar pro-
cedure could be followed for e.g. the structure function eddy-viscosity model
(Normand & Lesieur 1992). In a formulation equivalent to that given by Leith
(1991) the Smagorinsky eddy-viscosity (Smagorinsky 1963) is defined as

νe = C2
S∆2

√
S, (4.20)

where CS is the Smagorinsky constant. Inequality (4.19) now reduces to

k ≥ 1
2

√
3C2

S∆2S, (4.21)

which suggests the following subgrid-model for k:

k = Ck∆
2S, (4.22)

where the constant Ck has to satisfy

Ck ≥ 1
2

√
3C2

S . (4.23)

This inequality expresses a necessary condition for realizability, if a positive filter
is used. The model for the generalised turbulent kinetic energy k in equation
(4.22) is similar to the estimates for k, given by Lilly (1967), Deardorff (1970),
while it is known as the Yoshizawa model (Yoshizawa 1986). Yoshizawa proposes
CS(= Cuu2) = 0.16 and Ck(= C4

uu2/C
2
uu1) = 0.0886, where Cuu1 and Cuu2 are
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Figure 4.3: Lower bound using the Smagorinsky-eddy viscosity with CS = 0.16 for
the mixing layer at t = 80. (a) Contours of the lower bound for the top-hat filter
in the centre plane . Solid and dotted contours indicate positive and negative values
respectively. The contour increment is 0.015. (b) Lower bound averaged in the
homogeneous directions as a function of the normal coordinate (x2). Top-hat filter
(solid), Gaussian filter (dotted) and spectral cut-off filter (dashed).

notations which Yoshizawa uses in his presentation of the model. These values
clearly satisfy inequality (4.23).

The right-hand side of inequality (4.19) has been evaluated for the Smagorin-
sky eddy-viscosity using the numerical database described in the previous section.
Results for the centre plane are shown in figure 4.3a for the top-hat filter. The
agreement with figure 4.1a is reasonable and quantitatively corresponds to a cor-
relation of 0.62. Thus Yoshizawa’s model gives a reasonably good prediction of
k on the tensor level, which is in agreement with the findings of Erlebacher et

al. (1987, table 10). The results of averaging the right-hand side of (4.19) in
the homogeneous directions are shown in figure 4.3b, which may be compared
with figure 4.2. For the positive filters (top-hat and Gaussian) we observe that
inequality (4.19) is satisfied and that some global features of < k > are present
in the lower bound as well. The lower bound is about twice as small as k. For
the non-positive spectral cut-off, inequality (4.19) is clearly not satisfied. Since
the Yoshizawa model leads to positive values for k, it is suggested not to use
the Yoshizawa model in conjunction with the spectral cut-off filter, for which the
exact k does attain negative values. It should be noticed that, on the vector
level, i.e. when ∇k is considered, the correlation of the Yoshizawa model is poor
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(Erlebacher et al. 1987; Speziale et al. 1988).
The SEZH-model (Erlebacher et al. 1992; Zang et al. 1992)) is the sum of

the similarity model and Yoshizawa’s model. This model was developed using the
Gaussian filter, which is positive. The references suggest CS(=

√
(CR/

√
2)) =

0.092 and Ck(= CI/2) = 0.0033 or even Ck = 0. These values do not satisfy (4.23)
and, consequently, the Yoshizawa part of this model is not realizable. However,
this does not imply non-realizability of the complete SEZH-model, since the sum
of the similarity model and Yoshizawa’s model can theoretically still be positive
semidefinite. For this reason it is consistent to reformulate the SEZH-model in
the following way: rather than modelling the ’positive’ tensor u′

iu
′

j , the Yoshizawa

model approximates τij − (uiuj − uiuj), which in general is not ’positive’.
An alternative for modelling k is to solve this quantity using an additional

partial differential equation for k (Schumann, 1975; Horiuti 1985; Moin & Jimenez
1993). In this formulation the eddy-viscosity equals

νe = C∆
√

k (4.24)

with model coefficient C, while in the modelled k-equation terms proportional to√
k and k3/2 occur. This model requires positive values for k and the formulation

is such that k remains positive during the simulation, i.e. the model is ’realizable’.
As for the gradient and Yoshizawa models, it is consistent to use the k-equation
models in conjunction with positive filters only, since the exact k is guaranteed
to be positive in this case. To employ these models with e.g. the spectral cut-off
filter is less attractive, since in that case the original turbulent kinetic energy
attains values of both signs, while the model provides positive values only.

Finally, we discuss the implications for the dynamic eddy-viscosity, the dy-
namic mixed and the dynamic Clark model, formulated by equation (3.22), (3.26)
and (3.30) respectively. The incompressible formulation of these models is ob-
tained with use of the incompressible formulation of the basic models given in
the equations (4.13), (4.14) and (4.15).

The dynamic eddy-viscosity model can be supplemented with an isotropic
part of the form (4.22) in order to satisfy realizability. The coefficient Ck should
satisfy inequality (4.23), where C2

S is replaced by the dynamic coefficient Cd,

Ck ≥ 1
2

√
3Cd. (4.25)

In actual simulations Ck = 2Cd can be used, which matches figure 4.3b with
figure 4.2 for the positive filters.

The dynamic mixed and Clark model are certainly realizable if both the sim-
ilarity/gradient part and the eddy-viscosity part are realizable. The previous
remarks for the SEZH-model are also valid for these dynamic models. Realiz-
ability of the eddy-viscosity part requires the inclusion of an isotropic part, e.g.
equation (4.22) with Ck = 2Cd.
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4.4 Conclusions

In this chapter the turbulent stress in Large Eddy Simulation has been shown to
satisfy the same realizability conditions as the well-known Reynolds stress in the
statistical approach. Positiveness of the filter function is a necessary and sufficient
requirement. In particular this implies that the generalised turbulent kinetic
energy is positive in all regions of the flow. In view of these considerations, the
top-hat and Gaussian filters are fundamentally different from the spectral cut-off
filter. The first two filters (and their corresponding Favre filters for compressible
flows) are positive, whereas the spectral cut-off is non-positive and, consequently,
in the latter case the realizability conditions are not applicable. Indeed, the
generalised turbulent kinetic energy k based on spectrally filtered fields obtained
from a numerical simulation appeared to be negative in many regions of the
flow. For this reason subgrid-models which predict a positive k, e.g. the gradient
model, the Yoshizawa model and k-equation models, are preferred to be used
in conjunction with a positive filter. Bardina’s similarity model satisfies the
realizability conditions for positive filters only and, consequently, this model can
be used in combination with any filter. Imposing realizability for eddy-viscosity
models has led to a lower bound for k. Substitution of the Smagorinsky eddy-
viscosity in this inequality leads to the Yoshizawa model for compressible flow
with a corresponding inequality for the model constants. This inequality can also
be used to suggest a model for the isotropic term in the eddy-viscosity part of
the dynamic models.
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Chapter 5

Comparison of subgrid-models

in LES at low Mach number

In chapter 3 six subgrid-models for the turbulent stress tensor were presented.The
question which subgrid-model is most appropriate in actual Large-Eddy Simula-
tions arises naturally. In this chapter1 we test the models introduced in chapter 3
in LES of the temporal mixing layer at low Mach number, M = 0.2. The transi-
tion from laminar to developed turbulent flow is monitored and the performance
of the subgrid-models is investigated in both the transitional and the turbulent
regime.

The filtered Navier-Stokes equations contain subgrid-terms in the momentum
and energy equation. In this chapter we focus on the modelling of the turbulent
stress tensor τij in the momentum equation. The term created by nonlinearities
in the viscous stress tensor (Ri in the momentum equation) is neglected and no
model for the subgrid-terms in the energy equation is assumed. In chapter 7 we
will show that Ri is negligible and that for the mixing layer at low convective
Mach numbers the modelling of the subgrid-terms in the energy equation has no
significant effect on the Large-Eddy Simulation.

In chapter 1 we have distinguished between a priori and a posteriori testing of
subgrid-models. In this chapter we follow the latter approach. LES-results of the
temporal mixing layer using the six subgrid-models are presented and compared
with filtered DNS-data. In the following we describe the Direct Numerical Simu-
lation in section 5.1 and the Large Eddy Simulations in section 5.2. LES-results
are compared with filtered DNS-results in section 5.3. In section 5.4 we use LES
to simulate a mixing layer at high Reynolds number.

1This chapter is based on the papers Vreman et al. 1994f and 1995e.
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5.1 Description of the Direct Numerical Simulation

We simulate the three-dimensional temporal mixing layer described in chapter 1.
In this chapter we do not study compressibility effects, hence a low convective
Mach number M = 0.2 is used. The Reynolds number Re based on upper stream
velocity and half the initial vorticity thickness equals 50. It is sufficiently high
to allow a mixing transition to small scales as observed in the incompressible
simulations by Comte et al. (1992) and Moser & Rogers (1993). On the other
hand it is sufficiently low to enable an accurate DNS that resolves all relevant
turbulent scales on the computational mesh.

The Navier-Stokes equations are solved in a cubic geometry [ 0, L1 ] × [−1
2L2,

1
2L2 ] × [ 0, L3 ]. The length L = L1 = L2 = L3 of the domain is set equal to
four times the wavelength of the most unstable mode according to linear stability
theory, thus allowing two subsequent pairings of two-dimensional rollers. Peri-
odic boundary conditions are imposed in the x1- and x3-direction, while in the
x2-direction the boundaries are free-slip walls. The initial condition is formed
by the mean profiles described in chapter 1 superimposed with two- and three-
dimensional perturbation modes obtained from linear stability theory. A single
mode is denoted with (α, β), where α is the streamwise and β the spanwise
wavenumber. The two dimensional modes are (4,0), (2,0) and (1,0), where (4,0)
is the most unstable mode with wavelength equal to L/4. The subharmonic
modes (2,0) and (1,0) initiate vortex pairings. Three-dimensionality is intro-
duced by adding the oblique mode disturbances (4,4), (4,-4), (2,2), (2,-2), (1,1)
and (1,-1). Furthermore, random phase-shifts in the oblique modes remove the
symmetry in the initial conditions. Following Moser & Rogers (1993) the ampli-
tude of the disturbances is large (0.05 for the two-dimensional and 0.15 for the
three-dimensional modes).

The DNS is conducted on a rectangular uniform grid with 1923 cells. We use
the numerical method B described in chapter 2.

Visualisation of the DNS demonstrates the roll-up of the fundamental in-
stability and successive pairings (figure 5.1). Four rollers with mainly negative
spanwise vorticity are observed at t = 20. After the first pairing (t = 40) the flow
has become highly three-dimensional. Another pairing (t = 80), yields a single
roller in which the flow exhibits a complex structure, with many regions of posi-
tive spanwise vorticity. This structure is an effect of the transition to turbulence
which has been triggered by the pairing process at t = 40 (Moser & Rogers 1993).
Hence, the flow clearly contains a cascade towards small scales and all relevant
scales are accurately represented on the fine grid. The simulation is stopped at
t = 100, since the single roller at t = 80 cannot undergo another pairing.

The accuracy of the simulation with 1923 cells is satisfactory. First, the linear
growth rates of the dominant instability modes are captured within one percent.
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Figure 5.1: Contours of spanwise vorticity for the plane x3 = 0.75L at (a) t = 20,
(b) t=40 and (c) t=80. Solid and dotted contours indicate negative and positive
vorticity respectively. The contour increment is 0.1.

Furthermore, simulations on coarser grids have been performed, using method B
with 643 and 1283 cells respectively. The evolution of the momentum thickness
(equation 5.7 for unfiltered variables) and an instantaneous velocity component
at the centre of the shear layer are shown in figure 5.2. The resolution of the
643-simulation is clearly inadequate, but the results of the 1283-simulation are
quite close to those of the 1923-simulation.

55



0 20 40 60 80 100
0

1

2

3

4

5

6

7

time 

m
om

en
tu

m
 th

ic
kn

es
s 

 

0 20 40 60 80 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

 time

 v
el

oc
ity

 

a b

Figure 5.2: Evolution of the momentum thickness (a) and u3 at (1
4L1, 0,

1
2L3) (b)

obtained from DNS using a sequence of grids: 643 (dotted), 1283 (dashed) and 1923

(solid).

5.2 Description of the Large-Eddy Simulations

In order to perform Large-Eddy Simulations we solve the filtered Navier-Stokes
equations closed with a subgrid-model for the turbulent stress tensor. The bound-
ary conditions for the filtered variables are the same as for their unfiltered coun-
terparts. The initial conditions are obtained by filtering the initial conditions of
the DNS described above.

The specific filter adopted in the simulations is the top-hat filter. Some Large-
Eddy Simulations have been repeated with the Gaussian filter and only small
differences were found. The top-hat filter has appealing algebraic properties,
such as positivity the turbulent stress tensor (chapter 4). It is also attractive
from a numerical point of view, since the support of the filter function in physical
space is relatively small. The integration which appears in the definition of the
filter operation is performed with the trapezoidal rule.

The simulations are performed with a filter width ∆ = L/16 on a uniform grid
with 323 cells, which is considerably coarser than the DNS-grid. Thus the filter
width ∆ equals twice the grid-spacing of the coarse grid, denoted by h: ∆ = 2h.
Another option is ∆ = h, but in the next chapter it will be shown that the total
simulation error (arising from both the modelling and the discretization) is lower
for ∆ = 2h. The numerical scheme employed in the Large-Eddy Simulations in
this chapter is method B described in chapter 2. The influence of the numerical
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model for τij curve

M0 0 (no model) solid
M1 Smagorinsky marker ∗
M2 similarity marker ×
M3 gradient marker +
M4 dynamic eddy-viscosity dashed
M5 dynamic mixed dotted
M6 dynamic Clark dashed-dotted

Table 5.1: Subgrid-models for the turbulent stress tensor.

scheme on the simulation error will be investigated in detail in the next chapter.
A consistent comparison between LES and DNS-data requires filtering of the

solution obtained with DNS. In order to obtain filtered DNS-results, the filter
operation is applied to the variables on the fine grid. Next, the filtered data
is easily obtained on the coarse LES-grid (being a subset of the fine DNS-grid)
through restriction of the filtered fine grid data. Accurate LES-results should
be close to the filtered DNS-results. Even if a ’perfect’ LES-model is adopted,
exact agreement between LES- and filtered DNS-results cannot be expected for all
types of quantities. A number of different unfiltered initial conditions defined on
a fine grid can correspond to the same filtered initial condition defined on a coarse
grid. In general the Direct Numerical Simulations starting from these unfiltered
initial conditions will not lead to exactly the same filtered DNS-results. The
agreement between LES- and filtered DNS-results for averaged quantities is likely
to be higher than for instantaneous quantities. Hence, good agreement between
accurate LES- and filtered DNS-results is demanded for averaged quantities and
global features, rather than for instantaneous quantities, such as the evolution of
the velocity at a specific location.

Large-Eddy Simulations are performed using the six subgrid-models for τij

formulated in chapter 3. The names of the models with their abbreviations are
listed in table 5.1. The abbreviation M0 corresponds to the case that τij is simply
omitted. In this case the Large-Eddy Simulation is in fact a Direct Numerical
Simulation on the coarse LES-grid starting from filtered initial conditions. The
case M0 is included in order to provide a point of reference for the other subgrid-
models (M1-6). The performance of a specific subgrid-model is considered to
be bad if the errors (deviations from the filtered DNS) are comparable to or
larger than the errors corresponding to M0. In such a case the incorporation
of the subgrid-model does not make sense. For most quantities the discrepancy
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Figure 5.3: Comparison of the total kinetic energy E obtained from the filtered DNS
(marker o) and from LES using M0-6 (see table 1 for labels).

between the coarse-grid simulation without subgrid-model and the filtered DNS is
quite large, illustrating that there is something to improve upon; the contribution
of a subgrid-model should be significant.

5.3 Comparison of results

Various quantities obtained from LES with M0-6 are shown and compared with
the filtered DNS-data. We consider several aspects of the kinetic energy in de-
tail: the evolution of total kinetic energy, turbulent and molecular dissipation,
backscatter and Fourier energy spectra. The turbulent stress tensor accounts
for the transfer of kinetic energy from resolved to subgrid scales. Some of the
selected models adopt the eddy-viscosity hypothesis in order to approximate the
energy transfer to subgrid scales. In contrast to these models, non-eddy-viscosity
models (e.g. similarity) can have mechanisms to produce backscatter of energy
from subgrid- to resolved scales. For these models the amount of backscatter
will be calculated. Furthermore, as a local quantity the spanwise vorticity in a
representative plane serves to monitor the local performance of the six models.
We also investigate the evolution of the momentum thickness and various aver-
aged statistics, e.g. Reynolds-stress profiles. In this way a number of essentially
different quantities (mean, local, plane averaged) are included in the a posteriori

tests in order to assess the quality of the models.
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5.3.1 Total kinetic energy

A comparison of the subgrid-models with respect to the evolution of the total
kinetic energy, based on filtered variables,

E =

∫

Ω

1

2
ρ̄ũiũidx, (5.1)

is found in figure 5.3. First we discuss the Smagorinsky model M1, which gives
even worse predictions than M0 provides. The total kinetic energy E for M1
is observed to exhibit a characteristic behaviour: in the transitional regime of
the simulation the dissipation of energy is far too large, while it is far too low
afterwards. M1 gives such an excessive dissipation in the transitional regime
that transition to turbulence is hindered. The excessive dissipation caused by
this model has also been observed by Piomelli et al. (1990a) in their study of
turbulent channel flow. The other models (M2-6) are not too dissipative in the
transitional regime. The M3-case gives no improvement over M0, but the models
M2 and M4-6 do improve the results. In contrast to M3, no limiter is required
to stabilise M2. Comparison of the curves of M2 and M0 in figure 5.3 shows that
the similarity model M2 dissipates approximately the correct amount of energy.
However, Bardina et al. (1984) report that the similarity model M2 does not
dissipate energy in simulations of homogeneous turbulence with pseudo-spectral
methods. We have encountered the same problem if we perform the simulation
using the pseudo-spectral method C. As will be shown below, the simulation
with M2 and scheme B does not provide sufficient dissipation for small scales,
although the total dissipation is reasonably well predicted. The pseudo-spectral
method appears to be more sensitive to the presence of small scales on a relatively
coarse grid than the finite difference method B. The results for M4, the dynamic
eddy-viscosity model by Germano et al., illustrate that the dynamic adjustment
of the model coefficient meets the major short-coming of Smagorinsky’s model,
being the excessive dissipation in the transitional regime. Indeed the results are
much better than those of M1. The dynamic mixed model M5 and the dynamic
Clark model M6 both accurately predict the evolution of E. Within the group of
models considered, M5 most closely approaches the filtered DNS-results.

5.3.2 Turbulent and molecular dissipation

The decay of the total kinetic energy, E, is described by the following partial
differential equation:

∂tE =

∫

Ω
(Pd − ǫµ − ǫsgs)dx, (5.2)

where

Pd = p̄∂kũk, (5.3)
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Figure 5.4: Comparison of the subgrid-scale dissipation
∫
Ω ǫsgsdx (a) and molecular

dissipation
∫
Ω ǫµdx (b) obtained from the filtered DNS (marker o) and from LES

using M1-6 (see table 1 for labels).

ǫµ = µ(T̃ )Sij(ũ)∂j ũi, (5.4)

ǫsgs = −ρ̄τij∂j ũi. (5.5)

In our case the contribution of the pressure dilatation Pd can be neglected, since
the flow is almost incompressible. The molecular dissipation, ǫµ, is always positive
due to the equality Sij(ũ)∂j ũi = 1

2S2
ij(ũ). The subgrid dissipation, ǫsgs, repre-

sents the amount of energy transferred from resolved to subgrid scales, which
is positive if an eddy-viscosity model is adopted for τij. For non-eddy-viscosity
models, however, this term can be positive or negative, referring to forward or
backscatter of subgrid-scale kinetic energy respectively. Backscatter produced by
subgrid-models is sometimes hard to control within a simulation and can lead to
numerical instability. From the models we consider, the gradient model (M3), as
formulated in equation (3.12) leads to instabilities and, for this reason, backscat-
ter in M3 is artificially prevented, with the use of a limiter (see chapter 3).

Thus, the decay of total kinetic energy is caused by both subgrid-scale and
molecular dissipation. The subgrid-scale dissipation and molecular dissipation in-
tegrated over the domain are shown in figure 5.4. Simulation M0 is not found in
figure 5.4a; it has no subgrid-scale dissipation, since no subgrid-model is adopted.
Figure 5.4a clearly reveals the excessive dissipation of M1 in the transitional
regime. For the other models the subgrid-scale dissipation is initially small,
whereas it grows when the flow undergoes the transition to turbulence. Fur-
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thermore, M2 (without limiter) and M3 (with limiter) are observed to dissipate
energy, although these models do not employ an eddy-viscosity. Compared to the
filtered DNS-results, the subgrid dissipation is reasonably well predicted by M2
and M4-6.

The simulations that employ an eddy-viscosity (M1, M4-6) produce an al-
most constant level of molecular dissipation, whereas the molecular dissipation
increases and becomes too large for M0, M2 and M3. The presence of too many
small scales leads to the over-predicted molecular dissipation in the latter cases.
Obviously, the simulation with M0 contains too many small scales, since there
is no energy transfer to subgrid scales by a model. As will be shown in section
5.3.4, the simulations with M2-3 also contain too many small scales. The amount
of small-scale energy dissipated by the subgrid-model is insufficient in cases M2
and M3.

The molecular dissipation takes over part of the work that should be per-
formed by the subgrid-models M2 and M3. This further explains features of
the behaviour of M2 and M3 in figure 5.3. In figure 5.3 the evolution of E for
M3 is approximately the same as for M0, although, according to figure 5.4a, M3
provides some dissipation. However, the molecular dissipation for M0 is higher
than for M3 (figure 5.4b); consequently both simulations are almost equally dis-
sipative. Furthermore, the subgrid dissipation is comparable for M2 and M4,
although the total energy decay is stronger for M2. The molecular dissipation
explains this behaviour; it is much higher for M2, due to the presence of more
small scales.

With respect to the dynamic models M4-6 the subgrid dissipation in the tur-
bulent regime is best approximated by M4. The molecular dissipation is for all
three models somewhat too small. The subgrid dissipation for M5-6 is somewhat
too large. Consequently, the total energy decay for M5-6 is approximately correct
and better than for M4. These cancelling of errors in subgrid and molecular dis-
sipation will not occur in flows at very high Reynolds number, since in such flows
the molecular dissipation is negligible compared to the subgrid dissipation. From
the curves in figures 5.4 for the filtered DNS-results and M4-6, it is inferred that
in the turbulent regime of this flow the ratio between subgrid-scale dissipation
and molecular dissipation is about two to three, which is comparable to ratios
reported in Piomelli et al. (1990b). Although this mixing layer contains a mix-
ing transition to small-scale turbulence, the Reynolds number is relatively low.
The molecular dissipation of resolved scales (ǫµ) will decrease if the Reynolds
number is increased. A larger part of the dissipation will occur at subgrid scales
since dissipation essentially is a small-scale phenomenon. Thus in high Reynolds
number LES the somewhat over-predicted subgrid dissipation of M5-6 will not
be compensated by the under-predicted molecular dissipation. Hence, in high
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Figure 5.5: Comparison of the amount of backscatter obtained from the filtered DNS
(marker o) and from LES using M2, M5 and M6 (see table 1 for labels).

Reynolds number LES the total dissipation process in the turbulent regime is
possibly best predicted by M4 (see section 5.4).

5.3.3 Backscatter

The amount of backscatter produced by several subgrid-models is addressed next.
The eddy-viscosity models M1 and M4 do not produce backscatter since the
model coefficient in M1 is a positive constant by definition and the dynamic
model coefficient in M4 is restricted to positive values in order to ensure numerical
stability. Moreover, the limiter concept in M3 artificially removes the backscatter
from this model. Therefore, the only models which produce backscatter are M2,
M5 and M6. For these two models the total amount of backscatter, defined as

∫

Ω
min(ǫsgs, 0)dx, (5.6)

is plotted in figure 5.5. Since M5-6 incorporate an eddy-viscosity, these models
produce less backscatter than M2. The amount of backscatter for M5-6 is rela-
tively low in the turbulent regime, where the eddy-viscosity part of the model is
more important than in the transitional regime. A comparison with the filtered
DNS-results shows that M2 produces too much backscatter, whereas M5-6 do not
produce enough backscatter. Except in the early stages of the simulation, the
amount of backscatter is only a small fraction of the forward scatter (about 10
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percent for the filtered DNS-results). A priori tests of transitional and turbulent
channel flow show comparable back- and forward scatter for the spectral cut-off
filter, but smaller back- than forward scatter for the top-hat and Gaussian filters
(Piomelli et al. 1990b). Here a posteriori tests of the mixing layer demonstrate
that in the filtered DNS on a coarse grid and in actual LES with the top-hat
filter the structure of the turbulent flow is such that the amount of backscatter
is relatively small. In a recent study on dynamic LES of isotropic turbulence,
taking backscatter into account did not significantly influence the results either
(Carati et al. 1995).

Others decompose the subgrid dissipation ǫsgs into a mean and a fluctuating
part (Jiménez-Härtel 1994, Horiuti 1995) and find that the amount of backscatter
in the fluctuating part is relatively large. In this subsection we focussed on the
importance of backscatter relative to the full dissipation of energy to subgrid
scales.

5.3.4 Energy spectrum

We mentioned that the increase in molecular dissipation observed for M0, M2
and M3 was due to the presence of small scales. This is further clarified by ex-
amination of the energy spectrum at a certain time and the time evolution of
specific small- and large-scale components of the spectrum. Figure 5.6 contains
the streamwise kinetic energy spectrum in the turbulent regime at t = 80, de-
noted by A(k), where k is the streamwise wavenumber. The spanwise energy
spectrum exhibits similar features. The filtered DNS-result does not contain an
inertial range displaying the -5/3-law, because the spectrum is based on the fil-
tered velocity and the Reynolds number is relatively low in order to enable DNS.
The spectrum of the filtered DNS is in good agreement with those of the dynamic
models M4 and M5, with a slight preference for M5. The spectrum for the third
dynamic model (M6) is too large for the highest wavenumbers. Furthermore, we
observe that the simulation with M1 is not able to generate the desired amount of
small scales. On the other hand, the contributions of high wavenumbers are too
high for M0, M2 and M3 and, consequently, these simulations contain too many
small-scale contributions. This had to be expected for M0, having no subgrid-
model, whereas this result indicates insufficient energy dissipation of small scales
for the models M2 and M3.

The time evolution of a specific small-scale contribution, A(10), has been
plotted in figure 5.7a. This figure reflects that the previous remarks about small-
scale generation are valid for other times as well. The immediate occurrence of
small scales for model M3 has been analytically explained in chapter 3.

In figure 5.7b a specific large-scale contribution, A(1), is shown. The dynamic
mixed model M5 is the best approximation of the DNS-result (note that the
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Figure 5.6: Comparison of the streamwise energy spectrum A(k) at t = 80 obtained
from the filtered DNS (marker o) and from LES using M0-6 (see table 1 for labels).

logarithm has been plotted). This figure further illustrates the behaviour of the
similarity model M2. On the one hand too many small scales are present due to
insufficient dissipation of these scales. On the other hand, the amount of large
scales is too low, indicating too much dissipation for large-scale structures. Thus
it can be explained that the dissipation of total energy, which contains large and
small-scale contributions is reasonable for M2 (figures 5.3-4).

5.3.5 Spanwise vorticity in a plane

The spanwise vorticity component is often used to visualise the large-scale roller
structure in mixing layers at low Mach number. In figure 5.1 we have visualised
the scenario of the DNS: four rollers of spanwise vorticity at t = 20, two at t = 40
and one at t = 80. During these pairing processes the mixing layer undergoes
a transition to turbulence and many small regions of spanwise vorticity of both
signs occur. In the Large-Eddy Simulations this scenario is reproduced in nearly
all cases (M0, M2-6). Only the simulation with the Smagorinsky model M1 is
an exception; instead of four rollers at t = 20 only two rollers form, indicating
that the linear instability process is highly affected by the excessive dissipation
caused by M1. Figures 5.8-9 display the spanwise vorticity at t = 80 in the
plane x3 = 0.75L3 for the filtered DNS restricted to the coarse grid and for M0-
6. First, we compare the filtered DNS-result in figure 5.8a with the unfiltered
DNS-result in figure 1c, which corresponds to the same time and plane and has
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Figure 5.7: Comparison of the evolution of the A(10)-component (a) and the A(1)-
component of the energy spectrum obtained from the filtered DNS (marker o) and
from LES using M0-6 (see table 1 for labels).

the same contour increment. Obviously, the smallest structures are removed by
the filtering and the peak values of the vorticity are considerably reduced. The
vorticity field of the filtered variables can successfully be represented on the coarse
grid. Furthermore, the amount of positive spanwise vorticity in the filtered case
is smaller than in the unfiltered result. We conclude that most structures of
positive spanwise vorticity in the DNS are smaller than the filter width ∆, thus
being subgrid scales on the LES-grid.

In the following, we turn to the LES-predictions M0-6 in figures 5.8b-d and
5.9, which ideally should resemble the filtered DNS-result in figure 5.8a. The
simulation with no subgrid-model (figure 5.8b), contains too many small-scale
structures and the peak intensities are too large. The physical dynamics of such
small-scale structures clearly cannot be correctly captured on the coarse 323-grid.
On the other hand the result in figure 5.8c, corresponding to the Smagorinsky
model M1, is too smooth; it contains mainly large-scale structures. The two
rollers produced at t = 20 (instead of four) have slowly started to pair at t = 80,
but no transition to smaller scales occurs and the mixing layer is much too thin.
Like M0, the similarity model (M2; figure 5.8d) and gradient model (M3; figure
5.9a) give rise to an excessive number of small structures and regions of positive
spanwise vorticity. This is in agreement with the energy spectra in figure 5.6,
in which the contributions at high wavenumbers are too large. Furthermore, the
vorticity distribution of M2 is quite similar to M0, only the peak intensities for
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Figure 5.8: Contours of spanwise vorticity for the plane x3 = 0.75L at t=80 obtained
from (a) the filtered DNS, restricted to the 323-grid, and from LES using (b) M0, (c)
M1 and (d) M2. Solid and dotted contours indicate negative and positive vorticity
respectively. The contour increment is 0.05.

M2 are weaker. Figure 5.9a clearly shows that M3 under-predicts the thickness
of the layer.

The vorticity obtained with the dynamic models (M4-6 in figure 5.9b-d) is
qualitatively in better agreement with the filtered DNS-results than the previous
plots. The peak values of the vorticity are quite well predicted and almost the
correct amount of small structures is present. With respect to the dynamic
models, M5 is preferred over M4 and M6. The thickness of the mixing layer
is better predicted than by M4. Furthermore, compared to M4 and M6, more
regions of positive spanwise vorticity are present and the negative regions are less
connected, which is in agreement with figure 5.8a. Hence, M5 yields the best
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Figure 5.9: Contours of spanwise vorticity for the plane x3 = 0.75L at t=80 obtained
from LES using (a) M3, (b) M4, (c) M5 and (d) M6. Solid and dotted contours
indicate negative and positive vorticity respectively. The contour increment is 0.05.

qualitative agreement with the filtered DNS. As explained in section 5.2 detailed
agreement between LES and filtered DNS on a local instantaneous level is not
required.

5.3.6 Positive spanwise vorticity

The occurrence of positive spanwise vorticity in the mixing layer is related to
the transition to turbulence. Due to the mean profile, the spanwise vorticity
is initially negative in the whole domain. In the two-dimensional case such an
initial condition implies that the (spanwise) vorticity remains negative throughout
the simulation. Apart from compressibility effects, only the ’vortex-stretching’
term in the vorticity equation can increase the global maximum of a vorticity
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Figure 5.10: Comparison of the spatial maximum of positive spanwise vorticity as
a function of time obtained from the filtered DNS (marker o) and from LES using
M0-6 (see table 1 for labels).

component. Vortex-stretching is essential in the generation of turbulence. From
examining the evolution of the maxima (or minima) of vorticity components it
can be inferred whether this mechanism is present in the flow.

In figure 5.10 the evolution of the maximum of the spanwise vorticity is shown
for the various simulations considered. The filtering strongly reduces the DNS-
values for this quantity, as is observed from a comparison of figures 5.1c and 5.8a,
but figure 5.10 shows that the sudden increase of positive spanwise vorticity is also
present in the filtered DNS. The models M0, M2 and M3 over-predict this quan-
tity, since in these simulations there are too many small-scale contributions. On
the other hand, in the simulation with M1 no positive spanwise vorticity is gen-
erated for a long time, corresponding to the absence of strong vortex-stretching.
This result again illustrates that the Smagorinsky model hinders the transition
to turbulence. The dynamic models M4 and M5 both give predictions which
are relatively close to the filtered DNS-results, whereas the increase of positive
spanwise vorticity starts too early for M6.

5.3.7 Momentum thickness

From figures 5.8-9 we have already observed that the thickness of the mixing layer
depends on the subgrid-model. This dependence is further clarified in figure 5.11,
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Figure 5.11: Comparison of the momentum thickness obtained from the filtered
DNS (marker o) and from LES using M0-6 (see table 1 for labels).

in which the evolution of the momentum thickness, based on filtered variables,

δ = 1
4

∫ L/2

−L/2
< ρ̄ > (1 − < ρ̄ũ1 >

< ρ̄ >
)(

< ρ̄ũ1 >

< ρ̄ >
+ 1)dx2, (5.7)

is shown. The operator < . > represents an averaging over the homogeneous
directions x1 and x3. Since the definition of the momentum thickness employs the
mean velocity profile, tests for the momentum thickness quantify the spreading of
the mean velocity profile. Figure 5.11 displays a short period of laminar growth
(until t = 20), followed by a period in which the mixing layer grows considerably
faster, visualising the increased mixing caused by turbulence.

The models M1 and M3 lead to worse predictions for the momentum thickness
than M0, indicating that with respect to this quantity LES without a subgrid-
model is preferred over adopting M1 or M3. The slow growth of the momentum
thickness for M1 further establishes the observation that this model hinders the
transition to turbulence. The results for M4 are quite similar to M0, whereas the
models M2, M5 and M6 clearly yield improvement over M0 and are relatively
close to the filtered DNS-result. It is remarkable that the evolution of the mo-
mentum thickness is almost identical for M2 and M5. This indicates that for the
momentum thickness the improvement over M0 is mainly due to the similarity
model, since the eddy-viscosity part of M5 does not seem to affect this quantity.
Other evidence for the small effect of the dynamic eddy-viscosity on the momen-
tum thickness is that the curves for M0 and M4 almost coincide. However, the
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Figure 5.12: Comparison of the profiles of the turbulent intensities < ρ̄v2
i >1/2 for

i = 1, 2, 3 (a,b,c) and the Reynolds stress − < ρ̄v1v2 > (d) at t = 70 obtained from
the filtered DNS (marker o) and from LES using M0-6 (see table 1 for labels).

similarity model already plays a role in the early stages of transition. The time
at which the increased mixing starts is relatively early compared to M0. This
behaviour is confirmed by the finding that growth rates of linear instability waves
are increased by the similarity model and are also closer to the correct values.

5.3.8 Profiles of averaged statistics

Finally, we will compare x2-profiles of various statistics averaged in the ho-
mogeneous directions. These profiles will be calculated at t = 70, which is
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figure M1 M2 M3 M4 M5 M6

total kinetic energy 5.3 − + − 0 ++ +
subgrid dissipation 5.4a − + − ++ + +
molecular dissipation 5.4b − + + + + +
backscatter 5.5 − 0 − − 0 0
energy spectrum A(k) 5.6 − − − + ++ 0
component A(10) 5.7a − − − + + +
component A(1) 5.7b − − + + + 0
vorticity in a plane 5.8-9 − − − + ++ +
maximum vorticity 5.10 − − − + + 0
momentum thickness 5.11 − + − − + ++

< v1v1 >1/2 5.12a − + − + + ++

< v2v2 >1/2 5.12b − + + + + +

< v3v3 >1/2 5.12c − + 0 + + +
−< v1v2 > 5.12d − − − 0 ++ +

Table 5.2: Summary of the results for M1-6. The symbols −,0 and + refer to
bad, reasonable and good results, respectively. Furthermore, ++ is better than
+.

well beyond the starting point of the mixing transition process, but just be-
fore the final pairing has been accomplished. In the definition of these profiles,
vi = ũi− < ρ̄ũi > / < ρ̄ > denotes a fluctuating velocity field. In figure 5.12a-c
the turbulent intensities < ρ̄v2

i >1/2 are shown for i = 1, 2, 3. The filtered DNS-
results demonstrate that the streamwise intensity is somewhat larger than the
normal and spanwise intensities. The turbulent intensities are too large for M0,
while they are under-predicted by M1. The model M3 gives reasonable predic-
tions for i = 2, but the peak for i = 1 is much too high, whereas the spreading
for i = 3 is too low. The remaining three models (M2, M4-6) are equally ac-
curate; the global discrepancies with the filtered DNS-results are approximately
the same, although for i = 1 M6 is slightly better than the other models. With
respect to the Reynolds stress profile -< ρ̄v1v2 >, shown in figure 5.12d, the dy-
namic mixed model M5 has to be preferred, since it provides the most accurate
approximation of the filtered DNS-profile.

5.3.9 Summary

Table 5.2 summarises the results for the subgrid-models M1-6. The discrepancy
with the filtered DNS determines the quality of the result. In general, a result
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Figure 5.13: Evolution of the momentum thickness δ(t) obtained from using M1
(solid), M4 (dashed), M5 (dotted) and M6 (dashed-dotted).

for a given subgrid-model is considered to be bad if its discrepancy with the
filtered DNS is larger than the discrepancy between the filtered DNS and M0. If
within a group of models that provide good results denoted by ’+’, one model
performs even better than the other models, this model is labelled with ’++’.
Simulations with M2 and M4-6 do give considerable improvements over M0; the
incorporation of these models is useful in LES of the mixing layer. Within the
group of these four models, the dynamic mixed model provides the most accurate
results, compared to the filtered DNS results. Table 5.2 further shows that with
respect to overall accuracy M6 is next to M5, then M4 and then M2.

The resolution of 32 grid-points in the normal direction on a uniform grid
might seem too coarse for the representation of the mean profile. However, it
has to be noticed that according to the definition of the initial conditions in
LES, filtered mean profiles are used, which are smoother than the original mean
profiles. The instability resulting from this profile is essentially the same as in the
filtered DNS, since for all models considered (except for M1) LES was observed
to reproduce the four-roller structure that results from the primary instability.
Furthermore, the flow structure in the turbulent regime (e.g. figures 5.1c, 5.8-
9) suggests the choice of equal grid-sizes in all three directions. The results in
this chapter show that LES on the 323-grid is in satisfactory agreement with the
filtered DNS, provided an appropriate subgrid-model is used.
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Figure 5.14: The dynamic model coefficient Cd at x2 = 0 in LES with M4 (dashed),
M5 (dotted) and M6 (dashed-dotted), and the value of C2

S in M1 (solid).

5.4 LES at high Reynolds number

In this section we perform LES of the temporal mixing layer at high Reynolds
number using the subgrid-models M0-6 and investigate whether the flow becomes
self-similar. Although the simulation described in section 5.1 contained a transi-
tion to small scales, the size of the domain allowed two successive pairings only
and the Reynolds number was relatively low (50) in order to enable DNS. Com-
pared to DNS, LES should be able to simulate flows in a larger domain and at
higher Reynolds number at the same computational cost.

The temporal mixing layer in this section is simulated at M = 0.2 and
Re = 500, based on the reference values defined in section 1.2. The calcula-
tion is performed on a grid with 1203 cells and the computational domain is
large, L1 = L2 = L3 = 120. This size is equal to eight times the wave length of
the fundamental linear instability. Hence, the flow allows three successive pair-
ings before it saturates. Uniform noise is used to perturb the initial mean flow
(amplitude 0.05 and multiplied with e−x2

2/4), in contrast to section 5.1 where an
eigenfunction perturbation was used. The Large-Eddy Simulations employ the
top-hat filter with the basic filter width equal to twice the grid-spacing.

At this Reynolds number there are no DNS-results to compare with, but we
can verify whether the flow is self-similar. A temporal mixing layer is self-similar
if the development of the shear layer thickness is linear in time and profiles
of normalised statistical quantities at different times coincide (Rogers & Moser
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Figure 5.15: Evolution of the turbulent energy 1
2Rqq at x2 = 0 (a) and dissipation∫

< ǫ > dx2 (b) obtained from LES with M1 (solid), M4 (dashed), M5 (dotted) and
M6 (dashed-dotted).

1994). The common opinion is that mixing layers should display self-similar
behaviour, provided the Reynolds number is high, the computational domain is
large and the simulation is performed sufficiently far in time.

The evolution of the momentum thickness is shown in figure 5.13 for the
subgrid-models M1 and M4-M6. None of the simulations is fully self-similar,
since in each case the momentum thickness curve is not perfectly straight in the
turbulent regime. The most self-similar case is obtained with the dynamic eddy-
viscosity model M4, where δ(t) is approximately linear between t = 100 and 250.
The other two dynamic models, M5 and M6 lead to a faster growth than M4
between t = 40 and 130, but to a lower growth afterwards.

The results for M1 in the previous section were obtained using a Smagorinsky
constant of 0.17 (Lilly 1967, Schumann 1991). Since the model was observed to
be too dissipative and to hinder the transition to turbulence, the M1-simulation
in this section uses a lower coefficient, CS = 0.10. This value was proposed by
Deardorff (1970) in LES of turbulent channel flow, whereas Moin & Kim (1982)
used an even lower value. Compared to the dynamic models, M1 with CS = 0.10
is still too dissipative in the first part of the simulation. The shear layer displays
a strong growth in the laminar regime, indicating that CS = 0.10 is too large
in the laminar regime. Although the model does not prevent the transition to
turbulent flow, the transition is delayed and the sudden growth of the momentum
thickness starts relatively late (at t = 100). After transition has occurred, the
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Figure 5.16: Profiles of the streamwise r.m.s. velocity fluctuation versus y = x2/δ(t)
at t = 120 (solid), t = 160 (dashed) and t = 200 (dotted).

shear layer growth is too strong compared to the dynamic models, indicating
that the value C = 0.10 in the turbulent regime is too small. Furthermore, the
momentum thickness predicted by M1 does not increase linearly in the turbulent
regime, showing that the mixing layer is not self-similar.

Results for M0, M2 and M3 are not shown, because the simulations with these
models become unstable before t = 100 and, therefore, cannot be completed. The
reason is the insufficient dissipation from resolved to subgrid scales. We have
noticed too much energy in the small scales in the simulations at lower Reynolds
number (section 5.3.4) and this leads to unstable simulations at high Reynolds
number.

The evolution of the dynamic model coefficients at x2 = 0 is shown in figure
5.14 together with the value of C2

S in M1. Indeed, CS = 0.1 is initially too high,
but too low in the turbulent regime. The Smagorinsky coefficient corresponding
to the average value of the dynamic coefficient of M4 in the turbulent regime
would be CS = 0.13. The eddy-viscosities in M5-6 model a part of the turbulent
stress tensor only and therefore the dynamic coefficients in M5-6 are lower than
in M4. However, in this case the differences between the model coefficients of
M4-6 are smaller than at low Reynolds number (Vreman et al. 1994b), which
implies that incorporation of a similarity or gradient part is less useful in the
prediction of the subgrid dissipation if the Reynolds number is high.

Statistical quantities are self-similar if profiles at different times coincide after
the appropriate normalisation. In the following we consider the Reynolds stress
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Figure 5.17: Positive (dotted) and negative (solid) contours of spanwise vorticity in
the plane x3 = 90 at t = 160 (a) and t = 240 (b). The contour increment equals
0.05.

profiles, Rij =< ρ̄vivj >, with vi defined as in subsection 5.3.8, and the dissipation
profile < ǫ >=< ǫsgs+ǫµ >, with ǫsgs and ǫµ defined as in subsection 5.3.2. These
profiles are functions of time and the normal direction x2, which scales with δ(t).
The Reynolds stress tensor and the dissipation can be scaled by ρ1(∆U)2 and
ρ1(∆U)2/δ(t) respectively, where ρ1 is the upper free stream and ∆U is the
velocity difference between the free streams.

The turbulent kinetic energy 1
2Rqq at x2 = 0 and the integrated dissipation∫

< ǫ > dx2 are shown in figure 5.15. In self-similar flow these quantities should
not depend on time. From these figures it appears that an approximate self-
similar state is best reached by M4. Due to the finite size of the computational
domain the statistics are expected to decay after some time, but compared to
M4 the decay starts relatively early for M5-6. The somewhat over-predicted
subgrid dissipation by M5-6 noticed in subsection 5.3.2 is a possible reason for
the relatively early decay. In these Large-Eddy Simulations at high Reynolds
number, the fraction of the dissipation due to molecular viscosity is low (less
than 10% in the turbulent regime).

Figure 5.16 displays the profile of the streamwise r.m.s. velocity fluctuation
(R11/ < ρ̄ >)1/2 obtained with M4 at three distinct times, where y = x2/δ(t).
The curves approximately coincide, confirming that the simulation is reasonably
self-similar during this period of time.

Finally, the spanwise vorticity in a planar cut of the domain at two distinct
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times in the M4-simulation is shown in figure 5.17. The large-scale roller struc-
tures in this simulation starting from uniform noise appear to be less prominent
than in the simulations starting from an eigenfunction perturbation.

5.5 Conclusions

In this chapter we have presented a posteriori tests of Large-Eddy Simulations of
the temporal mixing layer using six subgrid-models: Smagorinsky (M1), similarity
(M2), gradient (M3), dynamic eddy-viscosity (M4), dynamic mixed (M5) and
dynamic Clark (M6). The first three subgrid-models form the basis for the latter
three dynamic models. Two sets of simulations have been performed, at low and
high Reynolds number respectively. The Large-Eddy Simulations in the first set
have been compared with DNS-data, whereas in the analysis of the second set of
simulations we focussed on other aspects, such as self-similarity. The conclusions
drawn from the first set of simulations are presented first.

In the first set of simulations the quality of a model is determined by the
discrepancy of its results with the filtered DNS-results. Furthermore, in order to
determine whether the inclusion of the subgrid-model is useful, comparisons with
a coarse grid simulation without any subgrid-model (M0) have been performed. A
summary of the results is found in table 5.2. When the models are arranged with
respect to the overall accuracy of their results, the following sequence appears:
M5, M6, M4, M2, M3, M1. The results of the latter two models are in general
worse than the M0-results; incorporation of these subgrid-models in LES of the
mixing layer is not useful. The other models in general give better results than
M0. The overall results indicate that the dynamic mixed model displayed the
best performance in these a posteriori tests. The dynamic mixed model was also
observed to yield the most accurate results in comparitive tests of subgrid-models
in LES of a driven cavity (Zang et al. 1993) and a rotating boundary layer (Wu
& Squires 1995).

The Smagorinsky model was found to be excessively dissipative in the transi-
tional regime. Comparison with the filtered DNS demonstrated that M1 strongly
influences the linear evolution of disturbances, since the four-roller structure is
not reproduced. Furthermore, M1 hindered the transition to turbulence. No
positive spanwise vorticity was generated, the sudden growth of the momentum
thickness did not occur and turbulent intensities and Reynolds stress profiles were
under-predicted.

Although from the a priori point of view M2 and M3 are very similar and
both provide highly accurate representations of the turbulent stress tensor (Vre-
man et al. 1995a) they behave very differently in actual simulations: M2 yields
reasonable results, whereas M3 leads to instabilities if no limiter is used (see also
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chapter 3). However, even with the incorporation of a limiter, M3 produces too
many small scales and leads to inaccurate results for integral quantities and e.g.
the streamwise turbulent intensity. In order to stabilise the gradient model, the
inclusion of a dynamic eddy-viscosity as in M6 is preferred over a limiter (M3),
since the first case leads to more accurate results.

Examination of the energy spectra demonstrates that only the models which
contain a dynamic eddy-viscosity (M4-6), provide the correct amount of small
scales. Due to insufficient dissipation of small scales by the subgrid-model, the
flow simulated with M0, M2 and M3 contains too many small structures. This
gives rise to a higher molecular dissipation, which supplements the insufficient
small-scale dissipation of the model. Although the dissipation for small scales
is insufficient, the total energy dissipation provided by M2 was observed to be
reasonable, since too much energy was subtracted from the large scales. The
models M2 and M5-6 have mechanisms to mimic the backscatter of energy from
subgrid scales to resolved scales, but do not accurately predict it. However, actual
LES of the mixing layer seems to require only a small amount of backscatter.
The same is observed from the filtered DNS-results, in which the backscatter is
about 10 percent of the subgrid dissipation. Hence, a poor representation of the
backscatter by the subgrid-models is not too much a problem.

The second set of Large-Eddy Simulations with M0-6 concern a mixing layer
at a much higher Reynolds number in a larger computational domain (section
5.4). No DNS-results are available to compare with, since the Reynolds number
is too high to accurately resolve all scales with the present super computers.

Since the amount of subgrid dissipation obviously depends on the value of the
Smagorinsky constant CS , the dissipative behaviour of the Smagorinsky model
could be better using a lower value for CS . Therefore, in this case we used the
lower CS = 0.10 in the simulation with M1. The model is still too dissipative in
the laminar regime; the transition occurs, but too late and in the turbulent regime
the model is not sufficiently dissipative. Hence, a varying model coefficient that
attains the appropriate value in transitional and turbulent regimes is required.
The dynamic models meet this requirement.

The simulations with M0, M2 and M3 become unstable in the turbulent
regime. M0 has no subgrid dissipation and the dissipation of M2 and M3 is
insufficient to prevent an excessive amount of small scales.

The three dynamic models M4-6 adequately suppress the generation of small
scales, but there are differences between the results of the three simulations.
Within this group of models the dynamic eddy-viscosity model yields the most
self-similar turbulent statistics. Self-similarity is presumably sensitive to the pre-
cise amount of subgrid dissipation in the turbulent regime, which is best predicted
by this model (section 5.3.2).
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The results in this chapter apply to the mixing layer at low Mach number.
Details of the comparison may be valid only for this case, but the global features
are expected to be more generally applicable. Examples of such global features
are: the excessive dissipation of the Smagorinsky model, the insufficient dissipa-
tion of small scales by the similarity and gradient model and the relatively ade-
quate small-scale predictions by the dynamic models. At higher Mach numbers,
subgrid-modelling of the energy equation has to be taken into account (chapter
7) and, possibly, the subgrid-model has to model the interaction of turbulence
with shocks.
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Chapter 6

Comparison of numerical

schemes in LES at low Mach

number

The discrepancies between the results of LES and corresponding DNS or experi-
ments have two sources: short-comings of the model (modelling errors) and inac-
curacies resulting from the numerical approximation of derivatives on a relatively
coarse grid (discretization errors). For LES not only a variety of subgrid-models
is available, but also various numerical methods can be adopted. In the previous
chapter we presented a posteriori tests of LES using different subgrid-models. In
this chapter1 we consider such tests using different numerical schemes in order to
appreciate the role of discretization errors in LES.

The discretization error does not only depend on the numerical method, but
also on the ratio between filter width (∆) and grid-spacing (h). This ratio rep-
resents the number of grid points available for the smallest relevant scale in LES
(∆). If the ratio ∆/h is small, rapidly fluctuating fields have to be represented on
a few grid points only. Consequently, the discretization error will be large and the
results will be sensitive to the specific numerical method. At larger ∆/h ratios
the discretization errors will be smaller. However, these cases either require more
computational effort due to finer grids (fixed ∆) or imply larger modelling errors
due to larger subgrid-scale contributions (fixed h). The best choice is the ∆/h
ratio that minimises the total simulation error (arising from the modelling and
the discretization) in simulations with comparable computational costs.

In practice LES is usually performed with ∆ = h (e.g. Deardorff 1971 and
Normand & Lesieur 1992) or ∆ = 2h (e.g. Zang et al. 1992). In most current
research the former option is selected, although Kwak et al. (1975) and Love

1This chapter is based on the paper Vreman et al. 1995d.
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(1980) found that the total simulation error was minimal for ∆ = 2h. The
work by Kwak et al. and Love is only applicable to schemes that are second
order accurate in space. In this chapter we revisit this issue and establish the
appropriateness of ∆ = 2h for fourth-order and spectral schemes as well.

In a priori tests the modelling and discretization error can be separately cal-
culated (Vreman et al. 1994c, 1995a). However, to distinguish between these
errors in a posteriori tests is difficult (Meneveau 1994). Modelling and discretiza-
tion errors act simultaneously in actual LES and the discrepancy with the filtered
DNS gives information about the total error only. In this chapter we propose a
procedure to separate the effects effects of modelling and discretization error in
a posteriori tests. This procedure incorporates Large-Eddy Simulations with the
same filter width at a higher resolution.

We conduct the a posteriori tests for the temporal mixing layer using the
DNS described in chapter 5. The description of the Large-Eddy Simulations for
five numerical schemes and two ∆/h ratios is found in section 6.1. Results are
compared with filtered DNS-results in section 6.2 and the effects of modelling
and discretization errors are separated in section 6.3.

6.1 Description of the Large-Eddy Simulations

The Large-Eddy Simulations use the dynamic mixed subgrid-model in combina-
tion with several numerical methods. Compared to the other subgrid-models the
dynamic mixed model was found to give the most accurate results in the a poste-

riori tests in the previous chapter. The five numerical methods are the weighted
(A) and standard (A’) second-order central difference scheme, the weighted (B)
and standard (B’) fourth-order central difference scheme and the spectral scheme
C. These methods have been defined in chapter 2.

The Large-Eddy Simulations are performed at the same Mach and Reynolds
number, in the same cubic domain with length L and with the same boundary
conditions as in the previous chapter. The uniform grid contains 323 cells with
grid-spacing h. Since the numerical errors depend on the ∆/h ratio, we use two
filter widths: ∆ = L/16 and ∆ = L/32. Thus we perform the simulations for
∆ = 2h and ∆ = h respectively. We employ the top-hat filter and the initial
conditions are obtained by filtering the initial conditions of the DNS using the
appropriate filter width.

The discrepancy between the LES and filtered DNS-results determines the
quality of the LES. As in the previous chapter we include coarse-grid simulations
without subgrid-model (LES with the zero model) as a further point of reference.
These simulations are performed with scheme B for both ∆ = 2h and ∆ = h.

The simulations with schemes A, B and C appear to be stable, but the stan-
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dard central differencing methods A’ and B’ give rise to instabilities. The latter
methods lead to an excessive small-scale generation (’π-waves’), which is not suf-
ficiently suppressed by the molecular and subgrid dissipation. The transverse
weighting introduced in schemes A and B is able to prevent the excessive genera-
tion of π-waves. Hence, LES-calculations on coarse grids using central differences
can only be performed if the weighting procedure is incorporated. Hence, the
results in the next sections only concern the simulations using A, B or C.

6.2 Comparison of results

Various quantities obtained from LES with schemes A, B and C are shown and
compared with filtered DNS-data. We distinguish between the cases ∆ = 2h and
∆ = h. In each case we consider the time evolution of the total kinetic energy
E and momentum thickness δ defined in equation (5.1) and (5.7) respectively.
In addition to these two global quantities we compare profiles of the turbulent
kinetic energy calculated at t = 70 (compare section 5.3.8),

k(x2) = 1
2 < ρ̄(ũi −

< ρ̄ũi >

< ρ̄ >
)(ũi −

< ρ̄ũi >

< ρ̄ >
) >, (6.1)

where < . > represents averaging over the homogeneous directions x1 and x3.
Figure 6.1 shows the results for the ∆ = 2h case obtained with A, B and

C, together with the results of the filtered DNS and the coarse grid simulation
without subgrid-model. For the latter simulation scheme B has been used; scheme
A gives comparable results, while the spectral scheme C results in an unstable
coarse-grid simulation. Figure 6.1 shows that for all three methods the results
of the dynamic mixed model are better than those corresponding to the coarse-
grid simulation without subgrid-model. The differences caused by changing the
numerical method are considerable, although smaller than the effect caused by
the subgrid-model, which is represented by the difference between LES with the
dynamic mixed model and the coarse-grid simulation without subgrid-model.

If we compare the results with the filtered DNS, B gives the best predictions
for E, then C and finally A. For the evolution of the momentum thickness, C
clearly gives the best results, then B and then A. With respect to the k-profile
the three methods provide comparable accuracy. We conclude that for the ∆ = 2h
case, LES with a second-order method (A) gives worse results than LES with a
higher order method (B or C). For the evolution of the momentum thickness,
method C is better than B, but the reverse is true for the total kinetic energy.

Furthermore, with respect to computational effort, method C is about five
times as expensive as method B and seven times as expensive as method A. One
of the reasons that method C is more expensive is that for numerical stabil-
ity method C requires a convective time step limit which is about three times
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Figure 6.1: Comparison of numerical methods for the ∆ = 2h case: the evolution of
the total kinetic energy (a), the evolution of the momentum thickness (b) and the
profile of the turbulent kinetic energy at t = 70 (c). Filtered DNS (marker o), LES
with the zero model (solid), LES with the dynamic mixed model using the numerical
methods A (dashed), B (dotted) and C (dashed-dotted).

smaller than required with method A. Therefore, if we take both accuracy and
computational cost into account, scheme B is recommended.

So far we have presented results for the ∆ = 2h case. Next, we alter the ∆/h
ratio, keeping the grid-size h and thus the number of grid points constant, in
order to compare results which are obtained with a comparable amount of work.
As explained above, for smaller ∆ with h kept constant, the discretization error
becomes larger and the modelling error becomes smaller. We investigate how the
sum of these two errors, the total error, behaves if the ∆/h ratio is altered.

The results for the ∆ = h case are presented in figure 6.2, using the same
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Figure 6.2: Comparison of numerical methods for the ∆ = h case: the evolution
of the total kinetic energy (a), the evolution of the momentum thickness (b) and
the profile of the turbulent kinetic energy at t = 70 (c). Filtered DNS (marker o),
LES with the zero model (solid) and LES with the dynamic mixed model using the
numerical methods A (dashed), B (dotted) and C (dashed-dotted).

323-grid. The differences caused by changing the numerical method are quite
large, and in several instances the discrepancy with the filtered DNS is larger
than the difference between the coarse-grid simulation without subgrid-model
and the filtered DNS. Comparing the differences with the filtered DNS, scheme
A gives the best predictions for the evolution of E, then scheme C and finally
scheme B. As far as the momentum thickness d and the k-profile are concerned,
C gives the most acceptable results, then A and then B. Hence, for the ∆ = h
case the best results are obtained with (the most expensive) method C. If we
have to choose between the cheaper methods A and B, the lowest order method
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A is recommended. This example illustrates that in the ∆ = h case, a second-
order method can be preferred over a higher-order method in the class of finite
difference methods.

Comparing the ∆ = h (figure 6.2) to the ∆ = 2h case (figure 6.1), we observe
that for each numerical method, the curves in figure 6.2 are further from the
filtered DNS than in figure 6.1. Hence, the ∆ = 2h case is to be preferred over
the ∆ = h case, since it predicts the filtered DNS-results more accurately.

6.3 Separation between modelling and discretization

errors

In the previous section we considered differences between LES and the filtered
DNS. These differences we refer to as total errors. They are the sum of two effects:
the effect of the modelling error, caused by short-comings in the subgrid-model,
and the effect of the discretization error, caused by inaccuracies of the numerical
method. In the following we approximately separate these effects.

The discretization error in a LES will become smaller if the resolution is
increased (h is decreased), while the filter width ∆ is kept constant. The dis-
cretization error in such a ’fine-grid LES’ will be considerably smaller than in
the original LES. The aim of performing such a fine-grid LES is to obtain a LES
in which the discretization error effects are small compared to the discretization
error effects in the original LES. The difference between those two Large-Eddy
Simulations gives an indication of the effect of the discretization error. For the
total kinetic energy E, we denote the discretization error effect as:

ǫd(E) = ELES − Efine-grid LES. (6.2)

We stress that the only difference between the fine-grid LES and the original LES
is a different grid-spacing h; the filter width ∆ is the same. Furthermore, since
discretization error effects in the fine-grid LES are small, the difference between
the fine-grid LES and the filtered DNS measures the effect of the modelling error:

ǫm(E) = Efine-grid LES − Efiltered DNS. (6.3)

The total error is the sum of these two contributions:

ǫt(E) = ǫd(E) + ǫm(E) = ELES − Efiltered DNS. (6.4)

Using equations (6.2) to (6.4) allows for an approximate separation of the dif-
ferent sources of error, provided the discretization error in the fine-grid LES is
considerably smaller than the discretization error in the original LES and the
modelling error in the fine-grid LES is about the same as in in the original LES.
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Note that ǫd(E) and ǫm(E) are not identical to the discretization error and the
modelling error; they only represent the effect of the discretization or modelling
error in E. A small effect of an error in E for example, does not necessarily im-
ply that the error itself, as it appears on the tensor or vector level in the filtered
Navier-Stokes equations, is small.

We have calculated these errors for the original LES on the 323-grid with
∆ = 2h = L/16. The corresponding fine-grid LES has been performed on a grid
with 643 using method B. The ratio between ∆ and the grid-spacing in the fine-
grid LES hence equals 4. This ratio is quite large, which implies that the fields
are quite smooth on the grid-scale. Thus the discretization error in such a LES
will be considerably smaller than in the original LES.

Figure 6.3 shows ǫd and ǫm for the three quantities E, δ and k. With respect
to the evolution of E (figure 6.3a), the discretization error effects are smaller than
the modelling error. The second-order scheme A is observed to give the smallest
discretization error effect. For scheme B and C the discretization error and mod-
elling error effect have opposite signs, which implies that the discretization error
assists the subgrid-model in the representation of this quantity: the total error is
smaller than the modelling error.

For the momentum thickness (figure 6.3b), the discretization error effects of
the methods A, B and C and the modelling error effect are of the same order of
magnitude. The reason for the good results produced by the spectral scheme is
that the discretization error effect is opposite to the modelling error effect during
the whole simulation and, consequently, the total error is considerably lower than
the modelling error. Schemes A and B assist the subgrid-model only until t = 50.
After t = 50 both schemes increase the total error, but scheme A yields a larger
error than the higher-order scheme B. These observations suggest that for the
spectral scheme, improvement of the subgrid-model (decrease of the modelling
error) is expected to give worse results, since the total error will increase, while
for schemes A and B, improvement of the model will provide better results after
t = 50.

With respect to the k-profile (figure 6.3c) the discretization error for scheme C
gives rise to smaller differences than for scheme A and B. Thus we have observed
that the effects of the discretization error are often comparable to the effects of
the modelling error. In some instances the discretization error partially cancels
the modelling error, which implies that grid-refinement will not necessarily give
rise to smaller total errors.

In this section we have presented results for the ∆ = 2h case. A similar sep-
aration of error-effects for the ∆ = h case, showed that the discretization error
effects were larger than in the ∆ = 2h case, while the modelling error effects
were smaller. This behaviour was to be expected, since a decrease of ∆, with h
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Figure 6.3: The modelling error effects (solid) and the discretization error effects for
the numerical methods A (dashed), B (dotted) and C (dashed-dotted) for LES with
∆ = 2h. Errors in the evolution of the total kinetic energy (a), the evolution of the
momentum thickness (b) and the profile of the turbulent kinetic energy at t = 70
(c).

kept constant, gives a more rapidly fluctuating field leading to less accurate ap-
proximations of derivatives, whereas on the other hand the subgrid contributions
become smaller, leading to a smaller modelling error. In fact discretization errors
were observed to dominate over the modelling errors in the ∆ = h case and,
consequently, further effort to improve the subgrid-model does not necessarily
lead to improved predictions. A priori tests have predicted a similar behaviour
(Vreman et al. 1994c, 1995a).
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6.4 Conclusions

In this chapter we have presented a posteriori tests of Large-Eddy Simulations of
the temporal mixing layer using the dynamic mixed subgrid-model in combination
with several numerical methods. The numerical methods used were second-order
central differences (A weighted and A’ standard), fourth-order central differences
(B weighted and B’ standard) and a spectral method (C). Simulations with A’
and B’ turned out to be unstable due to excessive small-scale generation. The
weighting in A and B thus proved to be essential in order to obtain stable calcu-
lations.

Employing methods A, B and C, we have compared the cases ∆ = 2h and
∆ = h respectively. In the ∆ = 2h case the use of a high-order finite difference
or a spectral scheme is suggested, while in the ∆ = h case a lower-order finite
difference or spectral scheme has to be preferred. In both cases the spectral
scheme gives somewhat better results than the finite difference schemes, but it
is also considerably more expensive with respect to computational effort. Taking
this into account, scheme B is most efficient. From the comparison of the ∆ = 2h
and ∆ = h cases with respect to total errors (differences with the filtered DNS),
we conclude that the former case has to be preferred. It should be noticed that
∆ = 2h does not imply an increased computational cost compared to ∆ = h,
because only ∆ is varied, while h is the same in both cases. Hence, the resolved
variables in the ∆ = 2h case are more accurate, but those in the ∆ = h case
contain more small-scale information, since ∆ and thus the amount of energy in
the subgrid scales is smaller.

Finally we have proposed a procedure to separate the effects of discretiza-
tion and modelling error in the Large-Eddy Simulations. For the ∆ = 2h case
discretization error effects are smaller than or comparable to the modelling er-
ror. Furthermore, the discretization error does not always decrease the accuracy;
sometimes it assists the subgrid-model and thus reduces the total error.

88



Chapter 7

Subgrid-modelling in the

energy equation

The filtered equations for compressible flow have subgrid-terms in the momentum
and energy equations. In the previous chapters we focussed on the modelling
of the dominant subgrid-term in the momentum equation, the turbulent stress
tensor. The subgrid-terms in the energy equation (energy subgrid-terms) are the
subject of this chapter.1

Compared to incompressible LES, much less research has been conducted on
compressible LES. The first compressible subgrid-model has been formulated by
Yoshizawa (1986), who generalised the Smagorinsky formulation by incorporat-
ing a model for the isotropic part of the turbulent stress tensor. Erlebacher et

al. (1992) have extended the standard mixed model to compressible isotropic
turbulence. Moin et al. (1991) formulated the dynamic model for compressible
LES, with the dynamic eddy-viscosity model in the momentum equation and a
dynamic eddy-diffusivity model in the energy equation. This model has been ap-
plied to compressible isotropic turbulence (Moin et al. 1991) and to high-speed
transitional boundary layers (El-Hady et al. 1993).

The filtered energy equation contains six subgrid-terms α1 to α6 (equations
(2.24) to (2.29). In this thesis we use the evolution equation for the total energy,
whereas Erlebacher et al. and Moin et al. employ the internal energy equation.
As indicated in chapter 2 the differences between the two formulations are not
large. The filtered internal energy equation contains the subgrid-terms α2, α3,
α4 and α6. It does not contain α1, whereas α5 has a different form.

The question arises whether all energy subgrid-terms are equally important.
Erlebacher et al. and Moin et al. use a model for α2 only, but they do not give
satisfactory arguments why the other subgrid-terms can be neglected. For this

1This chapter is partially based on the papers Vreman et al. 1994d and 1995be.
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subgrid-term M = 0.2 M = 0.6 M = 1.2

α1 7.8 5.2 4.2
α2 3.3 2.9 3.0
α3 3.6 2.2 1.7
α4 2.4 1.8 0.76
α5 0.012 0.071 0.10
α6 0.0074 0.044 0.082

Table 7.1: L2-norms (·103) of the energy subgrid-terms at three different Mach
numbers: M = 0.2 (t = 70), M = 0.6 (t = 90) and M = 1.2 (t = 200).

reason we calculate the magnitude of all energy subgrid-terms using DNS-data of
the mixing layer at M = 0.2, 0.6 and 1.2 (section 7.1). These a priori estimates
provide a first indication for each subgrid-term whether it can be neglected or has
to be modelled. In section 7.2 we present new dynamic models for the relevant
energy subgrid-terms. Actual Large Eddy Simulations with these models are
performed in section 7.3.

7.1 A priori estimates of the energy subgrid-terms

The energy subgrid-terms are calculated from the DNS-data at three different
Mach numbers: M = 0.2, 0.6 and 1.2. The set-up of the DNS at M = 0.6 is
very similar to the M = 0.2 case, described in section 5.1. The stream- and
spanwise sizes of the computational box at M = 0.6 equal L1 = L3 = 68, which
corresponds to four times the wavelength of the most unstable linear mode. The
other parameters are chosen equal to the values at M = 0.2. Visualization of
the vorticity shows the formation of four two-dimensional rollers, which undergo
subsequent pairings. However, the two-dimensional rollers cannot be discerned
as clearly as in the M = 0.2 case and the pairing processes are somewhat slower
in dimensionless time units. These observations are in agreement with linear
stability theory, which predicts that two-dimensional waves become relatively
less important than three-dimensional waves if the Mach number is increased.
The DNS at M = 1.2 is described in detail in chapter 8.

The energy subgrid-terms are calculated according to their definitions where
the derivatives and filtering integrations are taken on the fine grid. The values
of the filter width are about the same in each case: ∆1 = ∆2 = ∆3 = 3.7 at
M = 0.2, ∆1 = ∆3 = 4.2, ∆2 = 3.7 at M = 0.6 and ∆1 = 4.0, ∆2 = ∆3 = 3.7
at M = 1.2. The energy subgrid-terms are evaluated at representative times in
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Figure 7.1: L2-norms in x1-x3 planes for the energy subgrid-terms at M = 0.2 at
t = 80: α1 (solid), α2 (dashed), α3 (dotted) and α4 (dashed-dotted).

the turbulent regimes of the simulations. These times are t = 70, 90 and 200
for M = 0.2, 0.6 and 1.2 respectively and correspond to the same value of the
momentum thickness. Table 7.1 shows the L2-norms of the energy subgrid-terms
at these three times.

The table shows that the subgrid-terms α1 to α4 have the same order of
magnitude. These terms are an order of magnitude larger than α5 and α6. These
observations are valid for all three Mach numbers, although the difference between
α1−4 and α5,6 is less pronounced if the Mach number is increased. The terms
α5,6 are due to the nonlinearities in the viscous stress tensor and heat flux. From
an a priori point of view these terms can be neglected compared to the other
energy subgrid-terms for a reasonably wide range of Mach numbers. Furthermore,
the difference between α1 (the turbulent stress on scalar level) and α5 indicates
that the viscous subgrid-term in the momentum equation, ∂j(σ̄ij − σ̆ij), can be
neglected, being much smaller than ∂j(ρ̄τij).

In order to demonstrate the spatial structure of the energy subgrid-terms
α1−4, we show L2-norms at M = 0.2 in figure 7.1. The norms have been cal-
culated for each x2 by integration over the homogeneous directions. The curves
for the higher Mach number cases have similar shapes and the respective levels
correspond to the global norms in table 7.1.

These a priori estimates suggest that a subgrid-model for the energy equation
should take the four subgrid-terms α1−4 into account. The compressible models
found in literature (Erlebacher et al. 1992, Moin et al. 1991) do model the
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subgrid-term α2 (and implicitly α1 as well), but neglect the subgrid pressure
dilatation α3 and the subgrid turbulent dissipation rate α4. In the next section
we formulate subgrid-models for the energy equation, which also take α3 and α4

into account.

7.2 Dynamic modelling of the energy subgrid-terms

In this section we present two new dynamic subgrid-models which incorporate
the four energy subgrid-terms α1−4. The first formulation models the energy
subgrid-terms starting from the dynamic eddy-viscosity model for τij , whereas
the second formulation models these terms using the dynamic mixed model for
τij . The models are called the full dynamic eddy-viscosity model (M4E1) and
the full dynamic mixed model (M5E1) respectively. The notation M4E1/M5E1
denotes that the dynamic models M4/M5 (see chapter 5) are extended to the
energy equation incorporating α1−4.

7.2.1 The full dynamic eddy-viscosity model

The turbulent stress tensor τij in M4E1 is modelled with the dynamic eddy-
viscosity model (M4) given in chapter 3. This expression substituted in the
definition of α1 provides the subgrid-model for α1.

Moin et al. (1991) introduced a dynamic eddy-diffusivity concept to model the
pressure velocity subgrid-term α2. The dynamic eddy-diffusivity model employed
in M4E1 is slightly different. The dynamic procedure is applied such that the
model represents the sum α2 + α3 instead of α2 only, in order to model the effect
of α3. Hence, the following expression is proposed for these subgrid-terms:

α2 + α3 = −∂j(
ρ̄Cd∆

2S(ũ)

(γ − 1)PrtM2
∂jT̃ ), (7.1)

where the numerator in the fraction denotes the eddy-viscosity on the F -level
and Prt is the dynamic turbulent Prandtl number. This eddy-diffusivity model
is similar to the molecular heat flux term (equation (2.8)), but the molecular vis-
cosity and Prandtl number have been replaced by the dynamic eddy-viscosity in
equation (3.22) and the turbulent Prandtl number. The non-dynamic formulation
was first introduced by Eidson (1985) in LES of the Rayleigh-Bénard problem.
Here the turbulent Prandtl number is a dynamic coefficient.

To expose the dynamic procedure for Prt, it is convenient to write the subgrid-
terms α2 + α3 as follows:

α2 + α3 = τf = f(w) − f(w), (7.2)
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where

f(w) =
∂j(puj)

γ − 1
+ p∂juj with w = (ρ, ρu, p). (7.3)

Substitution of the eddy-diffusivity model (7.1) in the generalised Germano iden-
tity (3.16) yields:

1

Prt
Mf = Lf , (7.4)

where Lf is defined by (3.17) and

Mf = −∂j(
ˆ̄ρCd(κ∆)2S(v)

(γ − 1)M2
∂jG(ρ̂, p̂)) + (∂j(

ρ̄Cd∆
2S(ũ)

(γ − 1)M2
∂j T̃ ))̂ . (7.5)

The symbol v represents the Favre-filtered velocity on the FG-level (vi = ρ̂ui/ρ̂)
and G(ρ̂, p̂) represents the Favre-filtered temperature on the FG-level (see defi-
nition (2.9)).

The dynamic Prandtl number Prt in this work is assumed to be a function of
time only. Hence, it can consistently be taken out of the spatial derivatives and
filterings. The following least square approach is used to calculate Prt:

1/Prt =

∫
LfMfdx∫
M2

f dx
, (7.6)

where the integrations are performed over the whole domain. The dynamic
Prandtl number is artificially set to infinity at times where the right-hand side of
(7.6) returns negative values.

In order to complete M4E1 we incorporate a model for the turbulent dissipa-
tion rate α4. It is a positive quantity, provided a positive filter is used (chapter
4). The term also occurs in the k-equation model of incompressible LES studied
by Horiuti (1985) and Ghosal et al. (1995). Following these references we model
the term by:

α4 = cǫρ̄
k3/2

∆
, (7.7)

where k = 1
2τii is the subgrid turbulent kinetic energy and cǫ is a dynamic co-

efficient which is assumed to be a function of time only. Note that the filter
function has to be positive in order to guarantee the positivity of k. The model
is ill-defined if the spectral cut-off filter is used. In the following we present a
new procedure to obtain the dynamic coefficient cǫ.

Ghosal et al. (1995) remark that for high Reynolds number flows the coef-
ficient cannot be determined using the standard dynamic procedure, since the
turbulent dissipation is essentially a small-scale phenomenon. Turbulent energy
is generated by the large scales and after it has been transferred to small scales
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it is dissipated by molecular viscosity. The magnitude of the turbulent dissipa-
tion rate is therefore set by the large scales, but the dissipation takes place at
the smallest scales. This implies that α4 will not be small in fully developed
high Reynolds number flows. It also implies that there is no dissipation left in
the resolved scales if the Reynolds number is high. Consequently, the Germano
identity for α4 is zero in the limit of infinite Reynolds number and cannot be
used to determine cǫ. Therefore, Ghosal et al. (1995) do not use the Germano
identity for the turbulent dissipation rate, but determine cǫ with a complicated
procedure, using a local balance of the terms in the k-equation.

We present a much simpler procedure to determine cǫ, using a global balance
of the terms in the integrated k-equation. In this approach cǫ is necessarily a
function of time only, in contrast to the approach by Ghosal et al., where cǫ

depends on time and space. The k-equation in compressible flow can be written
as:

∂t(ρ̄k) = α1 + α3 − α4 + ∂jRj , (7.8)

where the last term represents all contributions which can be written in divergence
form. Integrating this equation over the computational domain and assuming
that R2 is negligible at the free-slip walls gives

∂t

∫
(ρ̄k) =

∫
(α1 + α3 − α4)dx. (7.9)

Substitution of the dissipation model (7.7) in this equation provides an expression
for the model coefficient:

cǫ =

∫
(α1 + α3 − ∂t(ρ̄k))dx∫

(ρ̄k3/2/∆)dx
. (7.10)

The quantities α1 and k can be calculated from the resolved variables and the
model for the turbulent stress tensor τij. The integral

∫
α3dx is obtained by

integrating the model for α2 + α3, since
∫

α2dx = 0. The model for α2 + α3 in
equation (7.1) is in divergence form, hence it does not contribute to the global
integral. A priori calculations of the integrals from the DNS-data show that the
integrated α3 is very small indeed. Furthermore, in the turbulent regime the
total amount of subgrid energy is approximately constant, because the energy
spectrum has filled up. In that case the integrated ∂t(ρ̄k) is small, leading to a
balance between α1 and α4:

∫
α1dx ≈

∫
α4dx. (7.11)

This does not necessarily imply equal L2-norms for α1 and α4 in table 1, since
α4 is positive everywhere, but α1 can change sign.
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The left-hand side of equation (7.11) is equal to the energy transfer from
resolved to subgrid scales by the subgrid-model. This term acts as a dissipation
term in the resolved kinetic energy equation, but occurs as a production term in
the subgrid kinetic energy equation. Equation (7.11) expresses a state of global
equilibrium in fully developed turbulence at high Reynolds numbers in which
the energy transfer from resolved to subgrid scales is equal to the molecular
dissipation occurring at the smallest scales.

7.2.2 The full dynamic mixed model

Whereas M4E1 employs the dynamic eddy-viscosity model (M4), the full dynamic
mixed model M5E1 adopts the dynamic mixed model (M5) for the turbulent stress
tensor τij. As in the previous model, the quantities α1 and k can be calculated
once τij is known.

Erlebacher et al. (1992) have introduced the mixed model for α2, propos-
ing a linear combination of the similarity model and an eddy-diffusivity model.
We propose a dynamic version of this model. Furthermore, we incorporate the
pressure-dilatation subgrid-term α3. Hence, these two terms are modelled to-
gether as:

α2 + α3 = f(w) − f(w) − ∂j(
ρ̄Cd∆

2S(ũ)

(γ − 1)PrtM2
∂j T̃ ), (7.12)

where f and w are defined in (7.3). The expression represents the similarity
model for α2 + α3 supplemented with a dynamic eddy-diffusivity term. The
eddy-diffusivity is the fraction of the eddy-viscosity in the dynamic mixed model
(equation (3.26)) and the dynamic turbulent Prandtl number Prt.

The model is substituted in the generalised Germano identity to obtain the
coefficient Prt, which results in

Hf +
1

Prt
Mf = Lf , (7.13)

where Lf is defined in (3.17), Mf in (7.5) and

Hf =
̂
f(ŵ) − f(

ˆ̂
w) − (f(w) − f(w))̂ . (7.14)

Like in M4E1, Prt is a function of time only and is obtained with the least square
approach

1/Prt =

∫
(Lf − Hf )Mfdx∫

M2
f dx

, (7.15)

where the integrations are performed over the whole domain. A theoretical ad-
vantage of the mixed model over the eddy-diffusivity model is that it does not
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model turbulent stress tensor τij the energy subgrid-terms α1−4

M0 0 0
M4E0 dynamic eddy-viscosity 0
M4E1 dynamic eddy-viscosity see section 7.2.1
M4E2 dynamic eddy-viscosity as in M4E1, but with α3 = α4 = 0
M5E0 dynamic mixed 0
M5E1 dynamic mixed see section 7.2.2

Table 7.2: Subgrid-models in the momentum and energy equation.

force
∫

α3dx to be zero, since the similarity part of the mixed model is not in
divergence form. However, this integral appears to be relatively small in a priori

and a posteriori tests.
The expressions for the model for α4 are the same as in the previous sub-

section, but evaluated for the dynamic mixed models: equation (7.7) for α4 and
(7.10) for the coefficient cǫ. To incorporate a similarity model for the dissipation
is not very useful, since such a model extracts its information from the resolved
scales. As explained in the previous subsection, the resolved scales do not con-
tribute to α4 if the Reynolds number is high. Indeed, a priori tests at M = 0.2
for the filter width given in section 7.1 show that the magnitude of the similarity
model for α4 is only 12% of the actual magnitude of α4 (Vreman et al. 1995b).

7.3 Results of Large-Eddy Simulations

Several calculations are performed to test the models for the energy subgrid-terms
α1 to α4 for three convective Mach numbers: M = 0.2, M = 0.6 and M = 1.2.
The Large Eddy Simulations use a grid with 32 × 33 × 32 points in the M = 0.2
and 0.6 cases and 40 × 65 × 24 points in the M = 1.2 case. The basic filter is in
each case is the top-hat filter with ∆ = 2h, the initial conditions are obtained by
filtering the corresponding initial DNS-data and the equations are numerically
solved using scheme B (chapter 2).

The purpose is to test the full dynamic eddy-viscosity model (M4E1) and
the full dynamic mixed model (M5E1) for the three convective Mach numbers.
As in the a posteriori tests presented in chapters 5 and 6, the LES-results are
compared with filtered DNS-results and the results of a coarse grid simulation
without a subgrid-model (M0). In order to measure the effect of modelling the
energy subgrid-terms, additional simulations are performed which only omit the
energy subgrid-terms. These simulations are labelled M4E0 and M5E0 and are
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Figure 7.2: Total kinetic energy E for M = 0.2 (a), M = 0.6 (b) and M = 1.2 (c)
obtained from the filtered DNS (marker o) and from LES using M0 (solid), M4E0
(dashed), M4E1 (also the dashed line), M5E0 (dotted), M5E1 (dotted in (a,b) and
dashed-dotted in (c)).

compared with M4E1 and M5E1, respectively. As noticed before, the subgrid-
terms α3 and α4 have been neglected in other work on LES incorporating the
energy equation (Erlebacher et al. 1992; Moin et al. 1991). For this reason we
also consider simulation M4E2, in which α1 and α2 are modelled, but α3 and α4

are neglected. These terms are neglected when the pressure-dilatation part in
equation (7.3) is omitted and cǫ is put to zero. Table 7.2 contains a list of the
models used in this section.

The evolution of the total kinetic energy E defined in (5.1) is shown in figure
7.2 for the three Mach numbers. With respect to the models in the energy
equation, we observe no difference between M4E0 and M4E1 for all Mach numbers
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Figure 7.3: Mean temperature at x2 = 0 for M = 0.2 (a), M = 0.6 (b) and M = 1.2
(c) obtained from the filtered DNS (marker o) and from LES using M0 (solid), M4E0
(dashed), M4E1 (dotted) and M4E2 (dashed-dotted).

and between M5E0 and M5E1 for M = 0.2 and 0.6. Hence, it appears that
modelling of the energy subgrid-terms at M = 0.2 and M = 0.6 has a negligible
effect on the total kinetic energy. The effect at M = 1.2 is larger, but still small
compared to the effect of modelling τij in the momentum equation (comparison
with M0).

With respect to the momentum equation, the dynamic mixed model for τij

yields the best results in the lowest Mach number case, but at higher Mach
numbers (0.6 and 1.2) the dynamic eddy-viscosity model turns out to be more
accurate. Inclusion of a subgrid-model for τij is found to be absolutely necessary
at M = 1.2, since without subgrid-model the coarse-grid simulation cannot be
completed. In the remaining part of this section we only consider the dynamic
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Figure 7.4: Model coefficient Cd at x2 = 0 (a) and 1/Prt (b) using model M4E1
at M = 0.2 (solid), M = 0.6 (dashed) and M = 1.2 (dotted), and model M4E2 at
M = 1.2 (dashed-dotted).

eddy-viscosity model for τij.
The total kinetic energy and the other quantities discussed in chapter 5 (e.g.

energy spectrum, momentum thickness and vorticity) are directly related to the
momentum equation. Incorporation of the energy subgrid-terms appears to alter
such quantities only slightly. Thermodynamic quantities are likely to be more
affected by the energy subgrid-terms. As an example we consider the mean
temperature.

Figure 7.3 shows the mean temperature, < ρT > / < ρ >, in the centre plane.
The mean temperature profile in this flow attains its maximum at this location.
The figure shows that the mean temperature and its temporal fluctuations in-
crease if the Mach number is increased. The absolute temperature variations
at high Mach number are much larger than at low Mach number. These varia-
tions are also influenced by the initial mean temperature profile, prescribed by
the Crocco-Busemann law (section 1.3), which depends on Mach number. With
respect to the centre mean temperature, M4E0 and M4E1 give different results
for each Mach number, indicating that this quantity is influenced by the energy
subgrid-terms. The role of temperature and its change by the energy subgrid-
terms clearly become more important at higher Mach numbers.

Inclusion of the energy subgrid-terms is useful for this quantity, since with
energy subgrid-terms (M4E1) the prediction is closer to the filtered DNS-result
than without (M4E0). More specifically, the energy subgrid-terms in M4E1 de-
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Figure 7.5: L2-norms of the terms α1 (solid), α2 + α3 (dashed) and α4 (dotted) in
LES using model M4E1 at M = 1.2.

crease the mean temperature at each Mach number. The mean temperature is
strongly under-predicted by M4E2 (and by M0). Modelling the subgrid-terms
α1−2, but neglecting α3−4 is thus worse than neglecting all energy subgrid-terms.
This is mainly due to α1 and α4, since these terms after integration are much
more important than the other energy subgrid-terms. These terms occur with
opposite signs in the energy equation and appear to have opposite effects. The
subgrid-term α1 decreases, but the dissipation α4 increases the temperature. The
dissipation α4 represents the conversion of subgrid kinetic energy into internal
energy and, obviously, this process increases the temperature. Since the global
effects of α1 and α4 approximately cancel each other (equation (7.11)), these
subgrid-terms should both be modelled or both be neglected.

The effect of Mach number on the dynamic model coefficients that occur in
the eddy-viscosity and eddy-diffusivity is not large (figure 7.4). The values for Cd

and 1/Prt are low in the transitional stage, giving rise to a relatively small eddy-
viscosity and diffusivity. The coefficient Cd in the dynamic eddy-viscosity model
in the turbulent regime can be compared with the square of the constant in the
Smagorinsky model, i.e. Cd = 0.2 corresponds to a Smagorinsky constant of 0.14.
The turbulent Prandtl number Prt (1/Prt has been plotted) fluctuates around 1
in the turbulent regime. The difference between M4E1 and M4E2 at M = 1.2 in
figure 7.4b demonstrates that the usually neglected pressure-dilatation subgrid-
term α3 is smaller than α2, in agreement with the a priori tests. However, it
has a significant contribution to the eddy-diffusion of about 25% and, hence, is
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preferred to be taken into account.
Finally, the global L2-norms of the modelled quantities, α1, α2 + α3 and α4

in M4E1 are shown in figure 7.5. These energy subgrid-terms thus appear to be
of the same order of magnitude, which was also indicated by the a priori tests in
section 7.2.

7.4 Conclusions

In this chapter we have addressed the modelling of the energy subgrid-terms
and performed a priori and a posteriori tests at low (0.2), moderate (0.6) and
high (1.2) convective Mach number. The a priori tests indicate that four of the
six energy subgrid-terms, α1−4 are of the same order of magnitude. The other
two subgrid-terms, due to nonlinearities in the viscous and heat flux term, are
much smaller. To model the relevant energy subgrid-terms we have presented
two new models: the full dynamic eddy-viscosity (M4E1) and the full dynamic
mixed model (M5E1). Both models incorporate the usually neglected pressure-
dilatation and dissipation subgrid-terms, α3 and α4 respectively.

These models have been used in actual LES at M = 0.2, 0.6 and 1.2 and
the results have been compared with filtered DNS-data and LES without energy
subgrid-terms. Several conclusions can be drawn. In contrast to the lowest
Mach number case, the dynamic eddy-viscosity model for τij gives more accurate
results than the dynamic mixed model at high Mach numbers. A satisfactory
explanation of the different accuracy of the dynamic mixed model at different
Mach numbers is not yet available. Using the dynamic mixed model in LES at
high Mach numbers, however, is still much better than using no subgrid-model
at all.

The energy subgrid-terms appear to have a very small effect upon quantities
extracted from the momentum variables, even at high Mach number. Thermo-
dynamic quantities, however, are more affected by the energy subgrid-terms. In
particular, the maximum mean temperature was found to be better predicted if
the energy subgrid-terms were included. The actual Large-Eddy Simulations con-
firmed the a priori finding that the energy subgrid-terms α1−4 are of comparable
size.

The mixing layer investigated in this thesis has equal free-stream thermody-
namic variables. The role of the energy subgrid-terms may become more impor-
tant in flows with larger temperature gradients, for example in a mixing layer
with a large difference between the upper and lower free-stream temperatures.
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Chapter 8

Shocks in DNS at high Mach

number

Numerical simulations of the two-dimensional compressible mixing layer have
shown that shocks appear when the convective Mach number M is higher than
0.7 (Lele 1989, Sandham & Yee 1989). Furthermore, the occurrence of shocks in
homogeneous isotropic turbulence has been investigated for the two- and three-
dimensional cases (Passot & Pouquet 1987, Lee et al. 1991). In this chapter1

we describe a Direct Numerical Simulation of the three-dimensional turbulent
mixing layer at M = 1.2 (section 1) and describe the shocks that occur in this
flow (section 2). In simulations of the three-dimensional compressible mixing
layer shocks have not been observed before (Sandham & Reynolds 1991, Lele
1994). The Direct Numerical Simulation in this chapter is different from those
described in the latter references. It has been calculated at a higher convective
Mach number and further into the nonlinear regime in order to obtain a mixing
transition to small scales.

8.1 Description of the DNS

The temporal mixing layer is simulated at convective Mach number M = 1.2.
The Reynolds number based on the upper stream velocity and half the initial
vorticity thickness equals 100. The initial condition is formed by the mean profiles
described in chapter 1 superimposed with a disturbance consisting of one pair
of equal and opposite oblique modes. Such a disturbance has intensively been
studied for somewhat lower Mach numbers (Sandham & Reynolds 1991) and was
found to initiate mixing transition in compressible mixing layers (Luo & Sandham

1This chapter is based on the papers Vreman et al. 1995fg.
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1994). The two modes are denoted by (1,1) and (1,-1) and correspond to the
most amplified waves in the linear stability problem. The amplitude of the initial
disturbance is 0.1 for each mode. The stream- and spanwise wavelengths of these
modes determine the sizes of the computational domain in the homogeneous
directions, given by L1 = 39.9 and L3 = 22.1 respectively. The length of the
domain in the normal direction is L2 = 59, the same as in the lower Mach
number cases described in the previous chapters.

An alternating numerical scheme, built out of the ingredients listed in chapter
2, has been constructed to solve the Navier-Stokes equations. The time march-
ing scheme is the second-order accurate Runge-Kutta method. The numerical
discretization for the spatial derivatives is alternating in the sense that scheme
D is used in the directions where steep gradients occur at times when shocks are
present, whereas scheme B is used otherwise. Scheme D employs a third-order
accurate MUSCL-scheme for the convective terms (Van der Burg 1993), which
is able to capture shocks. The convective terms in scheme B are discretized
with weighted fourth-order accurate central differences. It is well-known that a
central differencing method for the convective terms is unable to treat shocks,
unless the steep gradients within the shocks can be fully represented on the grid.
Therefore, the alternating scheme is preferred over a permanent application of
the fourth-order central scheme. It is also preferred over a permanent application
of the MUSCL-scheme for the following two reasons. First, the MUSCL-scheme
is less accurate than the fourth-order central scheme when no shocks are present
or when the shocks can be fully represented on the grid. In fact a permanent
application of the MUSCL-scheme would require an even finer grid than the grids
used in this chapter or it would seriously affect the accuracy of the transition to
turbulence. Furthermore, the MUSCL-scheme is computationally considerably
more expensive than the fourth-order central scheme (about a factor of two).

Since shocks can be identified by strong pressure gradients, the MUSCL-
scheme is applied when the pressure gradient exceeds a threshold value. More
specifically, when

si = max

∣∣∣∣
∂p

∂xi

∣∣∣∣
∆xi

p0
> c (8.1)

at a certain time t (the summation convention is not used), all convective fluxes
in the xi-direction are calculated with the MUSCL-scheme; otherwise the fourth-
order central discretization is used. In expression (8.1) si is called the shock-
sensor in the xi-direction, whereas ∆xi and p0 denote the grid-spacing and the
initial mean pressure respectively and have been incorporated in order to make
si independent of the scaling of the equations. The case c = 0 corresponds
to a permanent application of the MUSCL-scheme and c = ∞ to a permanent
application of the fourth-order central scheme. An alternating scheme is obtained
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Figure 8.1: Contours of the pressure in the plane x3 = 3.9 at t = 204 for c = ∞ (a)
and c = 0.2 (b). The contour increment is 0.05.

if c is given an appropriate intermediate value.
For the flow simulated in this chapter c = 0.2 appears to give satisfactory

results. Figure 8.1 shows contour plots of the pressure at t = 204 for two simu-
lations with c = ∞ and c = 0.2, respectively. At this time the pressure gradient
attains its maximum in the plane shown. The spurious oscillations around the
shock in figure 8.1a demonstrate that the fourth-order central difference (c = ∞)
is not able to capture the shock, whereas the alternating scheme (c = 0.2) pro-
vides a smooth representation of the shock without reducing the accuracy in other
parts of the domain (figure 8.1b). Except in the vicinity of shocks, the results
obtained in the two cases were observed to be identical. Thus, the fourth-order
central difference (c = ∞) gives rise to spurious oscillations near shocks, but does
not destroy the flow structure away from the shock nor the evolution of the flow
afterwards. On the other hand the MUSCL-scheme in the c = 0.2 case apparently
maintains sufficient accuracy in locations far away from the shock.

The flow is simulated on a uniform grid. From t = 0 to 80 it contains 240 ×
385×144 points, whereas from t = 80 until t = 240 the simulation is performed on
a grid with 320×513×192 points. A fourth-order accurate interpolation method
is used to transfer the field at t = 80 to the finer grid. The accuracy in the linear
regime has been checked by comparison with linear stability theory. Furthermore,
calculations were also performed on coarser grids (4

3 times fewer points in each
direction) and from t = 160 the simulation was also performed on a finer grid (3

2
times more points in the x1-direction). These additional calculations established
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Figure 8.2: Evolution of vorticity thickness (solid) and momentum thickness
(dashed).

the accuracy of the results presented in this paper. The demand for computer
resources could substantially be reduced by exploiting the symmetries in the flow.
Symmetries in the initial conditions are known to persist in time even after mixing
transition (Moser & Rogers 1993; Luo & Sandham 1994) and we have verified
this for the coarser grid simulations.

In the flow a transition to small scales is observed. At t = 80 the growth of
the initial perturbation has saturated, nonlinear effects have set in and a Λ-vortex
structure has developed. When time proceeds additional vortices are formed away
from the central layer. These vortices break down into smaller vortices, and thus
the flow undergoes a transition to small scale turbulence, similar to the flow at a
convective Mach number of 0.8 (Luo & Sandham 1994). During this process the
momentum thickness rapidly grows and is approximately linear in time (figure
8.2). At several times shock-waves are observed. The simulation is stopped at
t = 240, since not far beyond this time the growth of the layer will slow down
when the layer reaches the free-slip walls.

The Reynolds number (100) used in the simulation should not be much lower
for shocks to occur. In a simulation with a lower Reynolds number (50) the
mixing transition to small scales did not occur and no shocks were formed either.
Thus the occurrence of shock-waves in the three-dimensional mixing layer appears
to require a mixing transition to small scales. The flow is well-resolved, since
the fall-off in the two-dimensional energy spectrum was about twelve orders of
magnitude at most times throughout the simulation. Only at times when shocks
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Figure 8.3: Evolution of the shock sensor si for i = 1 (solid), i = 2 (dashed) and
i = 3 (dotted). The thin horizontal line corresponds to the threshold value c.

were present a fall-off of eight orders of magnitude was observed. Although these
observations confirm that the resolution is sufficient, the calculations should not
be performed on much coarser grids. For example, most of the shocks were not
observed in a calculation performed on a 160 × 257 × 96 grid.

8.2 Visualisation of shocks

The flow contains shock-waves in three distinct periods: t =121-123, t =181-
183 and t =199-225. Since a shock corresponds to a large pressure difference in
the direction perpendicular to the shock, it can be detected by examining the
flow field at times where at least one of the components of ∇p shows a high peak.
Furthermore, since shocks lead to a strong compression of the fluid, the dilatation
∇ · u attains large negative values within a shock. We have identified the three
periods using the shock-sensor si, based on the pressure gradient (figure 8.3).
The shocks occurring in each period will be discussed in more detail below.

First, we investigate the shocks in the first period (t =121-123) and determine
their origin. Maximum values of one of the components of the pressure gradient
occur in the centre plane x2 = 0. Figure 8.4a shows contour lines of the pressure
in this plane at t = 122 and four shocks are observed. Since there are two
symmetries in the centre plane, it is sufficient to consider the shock at the point
(10.0,0.0,6.0). Because the shock contains strong gradients in the x3-direction,
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Figure 8.4: Contours of the pressure at t = 122 in the plane x2 = 0 with p < p∞
(solid) and p > p∞ (dashed) with contour increment 0.025 (a). Velocity vectors at
t = 122 in the plane x2 = 0 (b) and in the plane x3 = 5.5 (c). In order to reduce
the density of the arrows, an arrow is plotted for only one in four grid-points in each
direction.

we say that its orientation is in the x3-direction. If the fluid passes through a
shock the pressure jumps from a low to a high value. In general, low pressure
regions correspond to the cores of vortices, whereas high pressure regions are
associated with stagnation points. Figure 8.4b shows the velocity vectors in the
plane x2 = 0. The velocity vectors in figure 8.4c display a spanwise vortex in
the plane x3 = 5.5, which is in front of the shock. The axis of the vortex is at
x1 = 10.0. The spanwise vortex in front of the shock accelerates fluid along its
axis in the x3-direction. The acceleration is so strong that the velocity attains
supersonic values and, hence, a shock is formed through which the fluid passes in
order to reach the stagnation point. Therefore, this shock is created by a sucking
vortex which accelerates the fluid along its axis. The shock exists for only a short
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Figure 8.5: Pressure at t = 182 in the plane x3 = 0 with p < p∞ (solid) and p > p∞
(dashed) with contour increment 0.025 (a). Velocity vectors at t = 182 in the plane
x3 = 0 (b) and in the plane x2 = 1.6 (c).

time, since the turbulent flow structure changes rapidly.
Next, we verify the shock jump relations for stationary inviscid flow. The

flow is instationary, but the speed of the shock is approximately zero during the
period in which the shock exists. The simulation data for this shock yields an
upstream Mach number M1 = 1.40 and the ratios p2/p1 = 2.10 and ρ2/ρ1 = 1.67,
where the subscripts 1 and 2 refer to the up- and downstream values respectively.
The standard tables for normal shock-waves give 2.12 and 1.69 for the pressure
and density ratios corresponding to M1 = 1.40. The actual values are very close
to these values, although the shock is viscous. In viscous flow shocks have a
finite thickness and in our case the shock thickness is approximately 0.35, equal
to three times the grid spacing.

The orientation, shape and related vortex structure of the shocks at t = 182
is different from t = 122. Figure 8.5a shows the pressure in the plane x3 = 0,
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Figure 8.6: Pressure at t = 200 in the plane x3 = 3.9 with p < p∞ (solid) and
p > p∞ (dashed) with contour increment 0.025.

which contains the maximum pressure gradient at this time. The two shocks in
this plane are symmetric and a similar pattern is found in the plane x3 = 11.05.
From the structures considered, the shock at this time is most similar to the recent
experimental visualisation of a shock in a mixing layer (Papamoschou 1995). In
order to study the flow structure around (18.5,1.6,0.0) in more detail, we turn to
the velocity vector plots in the planes x3 = 0 (figure 8.5b) and x2 = 1.6 (figure
8.5c). Figure 8.5b shows that the streamwise velocity component through the
shock is opposite to the upper free stream velocity. Two counter rotating vortices
are observed in figure 8.5c. Not surprisingly, the velocity attains relatively high
values in the region between these two vortices and becomes supersonic. A shock-
wave occurs, since the velocity of the fluid has to be reduced in order to reach
the stagnation point further downstream. Hence, the mechanism which creates
shocks is not unique; at t = 122 the supersonic flow along the axis of a vortex
creates a shock, whereas at t = 182 the supersonic flow between a pair of counter
rotating vortices gives rise to a shock.

Shocks appear for the third time at t = 200 and this time the size is consid-
erably larger than at the previous two periods. Figure 8.6 shows the pressure in
the plane with maximum pressure gradient, x3 = 3.9. The region enclosed by
the pair of shocks is a high pressure region and contains a stagnation point. In
this case the shocks fill a relatively large part of the domain and it is difficult to
identify separate vortex structures which create the shocks.

The three-dimensional shape of the shocks at the three times is shown in
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Figure 8.7: Surface ∇·u = −0.5 showing the three-dimensional shape of the shocks
at t = 122 (a), t = 182 (b) and t = 200 (c) in parts of the domain given by
[7.5, 12.5] × [−3.7, 3.7] × [4.6, 6.4] in (a), [17.0, 22.9] × [−6.5, 6.5] × [−2.8, 2.8] in
(b) and [2.5, 17.5] × [−14.8, 14.8] × [−7.5, 7.5] in (c).

figure 8.7. The boxes are only parts of the computational domain and are centred
around (10,0,5.5), (20,0,0) and (10,0,0), respectively. Due to the symmetries in
the flow, these structures also appear at other locations. The structures at t = 122
and t = 182 appear at four locations and the pair of large shocks with a horse-shoe
shape at t = 200 is also found centred around (30,0,11). The shocks at t = 122
and t = 182 persist only for a relatively short time. However, from t = 200 the
flow contains shocks for a much longer time, until t = 225. During this period
the structure shown in figure 8.7c changes and breaks down into several parts,
while also new shocks appear with stronger gradients in the spanwise direction.

Finally, we consider the effect of shocks on the turbulent dissipation rate in
the Reynolds-averaged approach. The turbulent dissipation rate is defined as
ǫ = σij ∂u′′

i /∂xj , where σij is the viscous stress tensor in compressible flow and
the overbar and double prime denote the Reynolds average and Favre fluctuations
respectively (see chapter 9). Sarkar et al. (1991) and Zeman (1990) separate the
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Figure 8.8: Profiles of the turbulent dissipation rate ǫ (solid), ǫs (dotted) and ǫd

(dashed) at t = 200.

turbulent dissipation rate ǫ in a solenoidal part ǫs = µω′′

i ω′′

i /Re, where ω′′

i denotes

the fluctuating vorticity vector, and a dilatational part ǫd = 4
3µ(∇ · u′′)2/Re.

For convenience of notation we assume the viscosity µ to be constant. The
decomposition ǫ = ǫs + ǫd is only valid in homogeneous turbulence, whereas in
flows with one inhomogeneous direction (x2),

∫
ǫdx2 =

∫
ǫsdx2 +

∫
ǫddx2. (8.2)

The dilatation dissipation is a pure compressibility effect. The contribution of ǫd

is mainly due to shocks, since shocks can be identified with large negative values
of the velocity divergence. Figure 8.8 shows the profiles of ǫ, ǫs and ǫd at t = 200,
when the largest shocks occur. The locations x2 = ±12, where the peaks the ǫd-
profile occur, correspond to the planes in which the shocks are most pronounced.
The dilatational fraction of the dissipation is less than 10 percent at t = 200 and
even smaller at all other times. When shocks are absent the fraction is even less
than 1 percent. Thus, the dilatation dissipation is increased by shocks, but it
remains small compared to the total turbulent dissipation rate. The effects of
compressibility on the turbulent statistics in the Reynolds average approach will
be investigated in detail in the next chapter.
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8.3 Conclusions

The compressible mixing layer at convective Mach number 1.2 has been simulated
using DNS. With an initial perturbation of two equal and opposite oblique modes,
the flow undergoes a transition to small scales. The turbulent flow contains in-
stantaneous shocks at several times. A combined fourth-order central difference/
third-order upwind method has been introduced in order to accurately represent
both the turbulence and the shocks. The numerical database has been analysed
in detail at the times when shocks appear. Different types of turbulent vortices
that generate the shocks have been identified: a vortex which accelerates fluid
along its axis and a pair of counter rotating vortices. Furthermore, the solenoidal
and dilatational part of the turbulent dissipation have been calculated. The di-
latation dissipation, which is mainly due to shocks, is always less than 10 percent
of the total turbulent dissipation.
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Chapter 9

Compressible mixing layer

growth rate and turbulence

characteristics

An early experimental observation of the effect of Mach number on turbulence
was the reduction in growth rate of the plane mixing layer (Birch & Eggars 1973).
In this thesis mixing layers with equal free-stream densities are considered, but
many experimental results in literature apply to mixing layers with a different
density ratio (the ratio between upper and lower free-stream density). It has
been established that intrinsic compressibility rather than density ratio effects
are responsible for the growth rate reduction (Brown & Roshko 1974, Bradshaw
1977, Papamoschou & Roshko 1988). In recent years there have been several
experimental, numerical and theoretical studies of compressible turbulence which
have added considerably to knowledge in this area (see Lele 1994 for a review),
but a convincing explanation of the reduced growth rate effect has been elusive.
In this chapter1 Direct Numerical Simulation databases are used to study the
effect of compressibility on mixing layers.

A single compressibility parameter, the convective Mach number M (Bog-
danoff et al. 1983, see also section 1.2), is sufficient to represent the experimental
growth rate data to a reasonable accuracy with a single curve. A collection of the
experimental results can be found in Lele (1994). In order to represent the exper-
imental growth rate data with a single curve the growth rates are normalised by
the incompressible growth rate at the same density ratio. One problem with the

1The work presented in this chapter was performed at the Department of Aeronautical En-
gineering, Queen Mary and Westfield College, London, in collaboration with dr. N.D. Sandham
and dr. K.H. Luo, who also significantly contributed to the resulting paper Vreman et al. 1995h,
which is the basis of this chapter.
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growth rate normalisation is the lack of an accurate model for the incompressible
growth rate as a function of density ratio, which leads to quite a large scatter
in the normalised growth rates (Sandham & Reynolds 1989, Lu & Lele 1993).
However, all the data show a large reduction in growth rate between M = 0.4
and M = 0.8. There is also evidence that the turbulence structure changes as M
increases. Flow visualisations (Clemens & Mungal 1992, 1995) at high Reynolds
numbers show how the low-Mach-number organised structure is lost as compress-
ibility becomes important. Experiments by Elliot & Samimy (1990) show that
turbulence fluctuations and Reynolds stresses decrease as M is increased.

In recent years, several explanations of compressibility effects have been of-
fered. Zeman (1990, 1991) proposed that the dilatational part of the total dissi-
pation becomes progressively important as the turbulent Mach number increases
due to the appearance of eddy-shocklets (shock-waves). He modelled dilatation
dissipation as proportional to the solenoidal dissipation and a function of the tur-
bulent Mach number Mt and the kurtosis of the velocity field. By incorporating
the model for dilatation dissipation into a second-moment closure formulation,
he was able to obtain the growth rate reduction as M increased. However, eddy-
shocklets have not been observed in experiment or Direct Numerical Simulation
below a convective Mach number of one (we exclude two-dimensional simulations,
which have shown shocks above M = 0.7) and thus there is no physical basis for
dilatation dissipation being important in the key region of M where the growth
rate is reduced. Furthermore, at a higher convective Mach numbers (M = 1.2),
eddy-shocklets were found (chapter 8), but the dilatation dissipation was small
even at times when eddy-shocklets were present. Sarkar et al. (1991) and El
Baz & Launder (1993) have also used models for dilatation dissipation to get the
growth rate reduction. However, more recently, Sarkar (1995) has commented
that there has been no direct validation of the concept for the mixing layer.

It has been observed that results for the growth rate of small disturbances
in laminar compressible shear flow match the reduction in growth rate of the
fully-developed turbulent flow (see e.g. Sandham & Reynolds 1990). This is a
remarkable result and suggests that in some way the physical mechanisms in the
turbulent flow are echoed in the linear regime. One would want an explanation of
the reduced growth rate of mixing layers to be applicable to small disturbances
as well as to the turbulent flow. This is certainly not the case for any theories
based on changes in dissipation, as the linear results are obtained from inviscid
stability theory, where the dissipation is zero.

Breidenthal (1990) proposed a sonic-eddy model for compressible turbulence
based on the assumption that only eddies whose eddy Mach number Me is unity
are efficient in mixing. The eddy Mach number is based on the velocity difference
across an eddy. The Kolmogorov spectrum of eddy scales would exist for all
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subsonic eddies (Me < 1). According to this model, the normalised shear layer
mixing rate (growth rate) is a function of the global Mach number Mδ = δ/λ =
∆U/c, where λ is a sonic-eddy size, δ the largest eddy scale, ∆U the characteristic
global eddy speed and c the speed of sound. A sudden drop in growth rate is
predicted at Mδ = 1 when the largest eddies become sonic. Further transitions
occur at very high Mach numbers when the turbulence micro-scale becomes equal
to the mean free path and when the shear layer width becomes comparable with
the mean free path. The model is conceptually important, but does not give
quantitative information on growth rate or turbulence structure.

Up until very recently Direct Numerical Simulation (DNS) of the compressible
mixing layer had been limited to the early stages of vortex formation (Sandham
& Reynolds 1991). These revealed changes in typical eddy structure but did not
contain small scales of turbulence. Recent work (Luo & Sandham 1994, 1995;
Vreman et al. 1994f, 1995bfg (chapters 5,7 and 8)) has succeeded in simulating
compressible flows through a mixing transition to small-scale turbulence. In
this chapter we analyse turbulence data from these simulations to address the
influence of compressibility on this building-block inhomogeneous flow problem.
In section 9.1 we describe the DNS-databases that were used in the study. The
averaging procedure and statistical equations are given in section 9.2, and used
to explain the growth rate reduction and anisotropy effects in section 9.3. The
results are discussed in section 9.4.

9.1 Direct Numerical Simulations

The temporal mixing layer with equal and opposite free-stream velocities has been
simulated by Direct Numerical Simulation (DNS) of the compressible Navier-
Stokes equations. The database covers four different convective Mach numbers:
M = 0.2, 0.6, 0.8 and 1.2. Details of the M = 0.2, 0.6 and 1.2 cases are given
in chapter 5,7 and 8 respectively and those of M = 0.8 in Luo & Sandham
(1994, 1995). Characteristic numbers are given in table 9.1. In all cases the
flow is simulated in a rectangular domain [0, L1] × [−1

2L2,
1
2L2] × [0, L3]. The

boundary conditions in the homogeneous directions (x1 and x3) are periodic,
whereas the boundaries in the normal direction (x2) are treated with character-
istic non-reflecting conditions in the M = 0.8 case and as free-slip walls in the
other cases. The non-dimensionalisation procedure and initial mean profile have
been described in chapters 1 and 2. Perturbations obtained from linear stability
theory are superimposed on the mean profile. The most unstable mode is two-
dimensional for M up to 0.6, but three-dimensional for higher M . Therefore the
M = 0.2 and 0.6 cases contain two- and three-dimensional initial disturbances as
described in section 5.1. For M = 0.8 and 1.2 the primary instability is three-
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M Re L1 L2 L3 grid scheme

0.2 50 59.0 59.0 59.0 192 × 193 × 192 finite difference
0.6 50 68.0 59.0 68.0 192 × 193 × 192 finite difference
0.8 140 26.7 60.0 26.7 144 × 221 × 160 Fourier/Padé
1.2 100 39.9 59.0 22.1 320 × 513 × 192 finite difference/upwind

Table 9.1: Specification of the DNS-databases: Mach number, Reynolds number,
computational box size, grid and spatial discretization.

dimensional, so only a single pair of equal and opposite oblique modes is used
(section 8.1). In these cases the symmetry in the initial conditions is used to
reduce computing time and storage requirements. The initial amplitude of the
instability waves is small for M = 0.8 (0.025), whereas the other simulations use
large-amplitude disturbances (typically 0.1). If the initial amplitude is small, the
Reynolds number has to be relatively high to trigger the transition to turbulence.

Numerical details are summarised in table 9.1. In each case the numerical
method is fully explicit with Runge-Kutta integration in time. With respect
to spatial derivatives, the M = 0.2 and 0.6 cases use scheme B, the M = 1.2
case uses a combination of scheme B and D (section 8.1) and the M = 0.8
case employs a Fourier collocation scheme in the periodic directions and a Padé
scheme in the normal direction (Sandham & Reynolds 1991; Luo & Sandham
1994). The accuracy of the simulations has been verified by running simulations
on coarser grids. Furthermore, coarser grid simulations without exploitation of
the symmetry conditions demonstrated that the initial symmetry was preserved
throughout the whole simulation in the M = 0.8 and 1.2 cases. Therefore, the
symmetry conditions can be exploited to decrease the computational cost without
affecting the results.

The evolution of the momentum thickness δ (defined in the next section) for
the cases considered is shown in figure 9.1. The later stages of the simulations
are characterized by a strong growth of the momentum thickness, which is ap-
proximately linear with time. The growth rate δ′ equals the slope of the curve
in this regime. The momentum thickness will only display exact linear growth if
the mixing layer is self-similar. Self-similarity is hard to achieve with DNS since
the computational domain in the homogeneous directions is finite. This reduces
the statistical sample size and eventually restricts the growth of large scale struc-
tures. Approximate values for the growth rate δ′ have been obtained from figure
9.1 for δ between 2 and 5, giving growth rate of 0.072, 0.058, 0.038 and 0.030 at
M = 0.2, 0.6, 0.8 and 1.2 respectively. The growth rate at M = 1.2 is about 40%
of its value at M = 0.2 which is in broad agreement with the reduction found
experimentally.
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Figure 9.1: Graph of momentum thickness against time for Mach numbers M = 0.2
(solid line), 0.6 (dotted), 0.8 (dashed), 1.2 (chain dotted).

In each simulation a transition to small scales is observed. The scenario of
the transition at M = 0.2 is very close to that of the incompressible mixing
layer. The two-dimensional instability leads to the formation of four rollers with
spanwise vorticity. These rollers undergo pairing processes until finally one roller
structure containing many small-scale structures fills the domain (see chapter 5).
The three-dimensional waves also grow and form Λ-shaped vortices and break
down into small-scale motions. For the M = 0.6 case the scenario is roughly the
same, but the two-dimensional roller structure is less pronounced and can hardly
be recognised anymore in the turbulent regime. In the M = 0.8 case the primary
three-dimensional instability forms Λ-shaped vortices, which initiate the mixing
transition towards small scales. More details about the vortex structures in this
simulation are given by Luo & Sandham (1994). The structures in the simulation
at M = 1.2 are similar to those at M = 0.8, but in addition eddy-shocklets form
(see chapter 8). Although we do not have exactly self-similar data, we do have a
cascade to small scales and resolve the dissipation at the smallest scales. When
turbulent quantities are averaged over a number of samples corresponding to
different times we have a reasonable approximation to the statistics of a self-
similar mixing layer.

In the simulation at M = 1.2 shocks were found at three times: t = 122,
t = 182 and t = 200 (chapter 8). Near t = 122 and t = 182 the shocks ex-
ist for only a few time units, but from t = 200 to t = 225 the flow is never
free from shocks. As shocks had not been observed before in three-dimensional
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computations, the M = 1.2 calculation was repeated with the compact finite
difference/characteristic boundary condition code until approximately t = 160.
Although the differences in the boundary conditions led to slightly different re-
sults, shock waves were still observed in the simulation.

9.2 Data reduction and analysis

In this section we use an analysis of integrated equations for the Reynolds stresses
to study the changes in turbulence characteristics as the Mach number is in-
creased. In subsection 9.2.1 we derive a new mathematical relation between
growth rate and integrated turbulent production starting from the Reynolds-
Averaged Navier-Stokes equations. The integrated Reynolds stress transport
equations are presented in subsection 9.2.2. We calculate the magnitude of each
term from the DNS-databases and establish that the so-called dilatational terms
are not important.

9.2.1 The relation between growth rate and turbulent produc-

tion

The statistical description of turbulence is based on the Reynolds-Averaged Na-
vier-Stokes equations (Tennekes & Lumley 1972). The differences between the
statistical approach and LES are determined by the averaging operator, which is
the ensemble average in the statistical approach and a local filter in LES (chapter
1). In compressible flow the flow variables in the Reynolds-Averaged Navier-
Stokes equations are written as

ρ = ρ + ρ′, (9.1)

p = p + p′, (9.2)

ui = ũi + u′′

i . (9.3)

In this notation ρ, p and ũi represent the mean flow, whereas ρ′, p′ and u′′

i are
the corresponding fluctuations. The bar denotes the ensemble average. The
tilde refers to Favre averaging, defined by ũi = ρui/ρ. The Reynolds-averaged
continuity and momentum equations have the following form:

∂tρ = −∂j(ρũj), (9.4)

∂t(ρũi) = −∂j(ρũiũj) − ∂ip + ∂jσij − ∂jρu′′

i u
′′

j . (9.5)

The last term in the momentum equation contains the Reynolds stress tensor,
which results from averaging the nonlinear convective term. Reynolds-averaged
variables in a temporal shear layer are functions of t and the normal coordinate
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x2 only, and are obtained by averaging the original variables in the homogeneous
streamwise and spanwise directions.

The momentum thickness in a temporal compressible mixing layer is defined
as:

δ(t) =
1

ρ1(∆U)2

∫
ρ(U1 − ũ1)(ũ1 − U2)dx2, (9.6)

where ρ1 is the upper free-stream density, U1 and U2 are the upper and lower
free-stream velocities respectively and ∆U = U1 − U2. (In our simulations U1 =
1, U2 = −1 and ρ1 = 1). Equation (9.6) expresses the definition for general
compressible mixing layers, whereas the definition in section 5.3.7 is for a specific
case. The integration in equation (9.6) is between the free-slip walls for the
confined case, while it extends from minus to plus infinity for the unconfined case.
There is no unique way to define the thickness of a shear layer, but the thickness
defined by equation (9.6) is generally regarded as an appropriate measure and
has been widely used (Brownand & Latigo 1979; Ragab & Sheen 1992; Rogers &
Moser 1994). An expression for the growth rate of the shear layer is obtained by
differentiating equation (9.6):

δ′ =
dδ

dt
=

U1 + U2

ρ1(∆U)2

∫
∂t(ρũ1)dx2 −

1

ρ1(∆U)2

∫
∂t(ρũ1ũ1)dx2. (9.7)

The first term at the right-hand side is zero as can be observed from the x2-
integrated mean momentum equation (9.5) for the streamwise direction. Since
equation (9.5) is in conservative form, the right-hand side vanishes after inte-
gration in the x2-direction if ũ2 = 0 and ∂2ũ1 = 0 at the boundaries in the
normal direction. With respect to the last term in equation (9.7), we consider
the evolution of twice the mean flow kinetic energy, given by

∂t(ρũ1ũ1) = ∂2(−ρũ1ũ1ũ2 + 2σ12ũ1 − 2ρu′′

1u
′′

2ũ1)

+2ρu′′

1u
′′

2∂2ũ1 − 2σ12∂2ũ1, (9.8)

where σ12 is the viscous stress tensor. After integration the conservative terms
vanish and hence the growth rate satisfies

δ′ =
2

ρ1(∆U)2
[

∫
(−ρu′′

1u
′′

2∂2ũ1)dx2 +

∫
(σ12∂2ũ1)dx2]. (9.9)

The first integral is the integrated turbulent production term, whereas the second
integral represents the molecular dissipation of the mean flow. In the turbulent
regime the latter can be neglected compared to the former and, consequently, the
expression for the growth rate reduces to

δ′ = − 2

ρ1(∆U)2

∫
(ρu′′

1u
′′

2∂2ũ1)dx2. (9.10)
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Thus, the growth rate of time-developing turbulent mixing layers is proportional
to the integrated turbulent production.

The relation between growth rate and production can be extended to spatial
mixing layers under certain conditions. The convection speed in a spatial mixing
layer is defined as Uc = 1

2(U1 + U2). We apply the following transformation:
x∗

1 = x1 − Uct, x∗

2 = x2, x∗

3 = x3 and t∗ = t. The Navier-Stokes equations are
invariant under such a Galilean transformation. In this new frame of reference the
spatial momentum thickness δ(x1) can be written as δ∗(Uct

∗) and, consequently,
the spatial growth rate satisfies:

dδ

dx1
=

1

Uc

dδ∗

dt∗
. (9.11)

Equation (9.10) can be used for dδ∗/dt∗ if we assume that terms with ∂/∂x∗

1 are
much smaller than terms with ∂/∂x∗

2. This provides a relation between growth
rate and integrated turbulent production for self-similar spatial mixing layers.

9.2.2 The integrated Reynolds stress transport equations

To exploit the connection between growth rate and integrated production we
consider the x2-integrated Reynolds stress transport equations. The Reynolds
stress equations for compressible flow in their general form are given by Blaisdell
et al. (1991). The terms in divergence form vanish after integration, hence the
equation for the (ij)-component of the integrated Reynolds stress becomes:

d

dt

∫
ρu′′

i u
′′

j dx2 = Pij + Πij − ǫij, (9.12)

where

Pij = −
∫

(ρu′′

i u
′′

2∂2ũj + ρu′′

j u
′′

2∂2ũi)dx2, (9.13)

Πij =

∫
p(∂ju′′

i + ∂iu′′

j )dx2, (9.14)

ǫij =

∫
(σik∂ku

′′

j + σjk∂ku
′′

i )dx2, (9.15)

which represent the integrated production, pressure-strain and dissipation ten-
sors, respectively. Note that equation (9.10) implies

P11 = ρ1(∆U)2δ′, (9.16)

where ∆U = 2 in our normalisation. In a self-similar mixing layer the growth rate
and, consequently, the integrated production is constant. Therefore, like Rogers
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Figure 9.2: Integrated turbulence statistics: (a) Reynolds stress Rij, (b) production
Pij , (c) pressure-strain Πij and (d) dissipation ǫij. Components are denoted with
triangles (11), crosses (22), diamonds (33) and squares (12).

& Moser (1994), we argue that in a self-similar stage the terms of equation (9.12)
are independent of time and scale with ρ1(∆U)3. Self-similarity also implies that
the values of the Reynolds-stress in the centre of the mixing layer have reached
a constant level, whereas the width of the profiles grows with δ. Therefore, we
define

Rij =
1

δ

∫
ρu′′

i u
′′

j dx2, (9.17)

which will be independent of time in the self-similar stage and will scale with
ρ1(∆U)2. Hence, the Reynolds stress equations reduce to an algebraic system

δ′Rij = Pij + Πij − ǫij . (9.18)

The values for the tensors Rij , Pij , Πij and ǫij have been plotted against
Mach number in figure 9.2. Since we do not have exact self-similarity at every
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time, the values in figure 9.2 have been averaged over a number of samples in the
region with approximately linear growth of the momentum thickness (figure 9.1).
The contributions of the (1,3) and (2,3) components of the Reynolds stress have
not been plotted since they are negligible compared to the other components.
Figure 9.2a shows that the anisotropy of the Reynolds stresses increases with
Mach number. From figure 9.2b, the production terms P22 and P33 are zero,
which is expected since the only significant mean velocity derivative, ∂2ũ1, does
not appear in these terms. Retaining only the significant terms, the system given
by (9.18) and (9.16) reduces to

δ′R11 = 4δ′+ Π11 − ǫ11, (9.19)

δ′R22 = Π22 − ǫ22, (9.20)

δ′R33 = Π33 − ǫ33, (9.21)

δ′R12 = P12+ Π12 − ǫ12. (9.22)

The pressure-strain term Π11 is negative, while Π22 and Π33 are positive. Thus,
pressure-strain acts to redistribute energy from the streamwise into the normal
and spanwise fluctuations. We remark that the pressure-dilatation 1

2Πkk is ap-
proximately zero, even at the highest M . The dissipation component ǫ11 does
not decrease with increasing Mach number as much as the other two components.
Thus, the dissipation in our simulations is less isotropic at higher Mach numbers.
The diagonal components of the dissipation tensor are considerably larger than
ǫ12, although the latter is not zero.

Dilatation dissipation and pressure-dilatation are of interest because of their
possible use in explaining compressibility effects. The total integrated dissipation
ǫ = ǫkk/2 can be split as ǫ = ǫs + ǫd, where ǫs is a solenoidal part and ǫd is a
dilatational part. In figure 8.8 we have shown profiles of the components of dis-
sipation against x2, whereas we consider integrated profiles here. The integrated
form of the dilatational dissipation is

ǫd =

∫
4

3

µ̃

Re
(∇ · u′′)2dx2. (9.23)

We consider the highest Mach number case M = 1.2 and on figure 9.3 show
the integrated total dissipation, dilatation dissipation and pressure dilatation as
functions of time. The dilatational part of the dissipation is very small even in the
stages of the simulation which contain eddy-shocklets. The pressure-dilatation is
somewhat larger, but it changes sign a number of times and is also not significant
compared to the total dissipation. These two dilatational terms are even smaller
in the cases with lower convective Mach number which do not contain eddy-
shocklets. Eddy-shocklets do increase the dilatational terms, but compared to
the total dissipation their contributions are too small to explain the growth rate
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Figure 9.3: Comparison of the magnitudes of total dissipation (solid line) with di-
latation dissipation (dashed line) and pressure-dilatation (dotted line) during the
simulation at M = 1.2.

reduction. The production and pressure-strain rate terms are much more affected
by compressibility than the dissipation and, consequently, the reduced growth
rate must be explained from these terms.

9.3 Modelling the effect of compressibility

In this section we identify the key terms contributing to the reduced growth
rate and build a complete model for the integrated Reynolds stress equations
using a deterministic model for pressure fluctuations and models for turbulence
anisotropy. In subsection 9.3.1 we argue that the mixing layer growth rate would
be proportional to the rapid pressure-strain term if the turbulence were isotropic.
Furthermore, the rapid pressure-strain term is expressed in the pressure extrema.
In subsection 9.3.2, we model the pressure extrema as functions of the convective
Mach number, using a compressible vortex model and the sonic-eddy concept.
Thus, the isotropic model is completed, which gives a good qualitative predic-
tion of the growth rate reduction. However, it predicts too low growth rates at
high Mach numbers. In subsection 9.3.3 we correct the isotropic model taking
anisotropy effects into account to obtain a better quantitative prediction of the
growth rate reduction. To represent the anisotropy effects, we adopt a certain
amount of turbulence modelling in order to arrive at a closed algebraic equation
for the growth rate.
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9.3.1 The significance of pressure-strain

In the following subsections we explain the reduced growth rate of the mixing
layer by consideration of a necessary adjustment in pressure fluctuations as the
Mach number is increased. A reformulation in terms of anisotropy is useful. We
define the Reynolds stress anisotropy as

bij =
Rij − (2/3)kδij

k
(9.24)

and the dissipation anisotropy as

eij =
ǫij − (2/3)ǫδij

ǫ
, (9.25)

where k = Rqq/2 and ǫ = ǫqq/2 are respectively the turbulence kinetic energy and
dissipation. With the assumption that we can neglect the pressure-dilatation term
in the kinetic energy equation, the integrated equations for the diagonal terms
reduce to

δ′(b11k − 8/3) = ΠR
11 + ΠS

11 − e11ǫ, (9.26)

δ′(b22k + 4/3) = ΠR
22 + ΠS

22 − e22ǫ, (9.27)

δ′(b33k + 4/3) = ΠR
33 + ΠS

33 − e33ǫ, (9.28)

where we have included the usual split of the pressure-strain term into a rapid
part ΠR and a slow part ΠS (see e.g. Speziale et al. 1991). The rapid part is
associated with the mean strain rate, while the slow part is associated with the
process of return to isotropy. The Reynolds stress anisotropy term is usually small
compared to 8/3 or 4/3. The dissipation anisotropy term is small compared to the
other terms. This results in a proportionality between the growth rate and the
diagonal pressure-strain components, which is confirmed by the data (figure 9.2).
If the turbulence were isotropic we would have direct proportionality between the
rapid pressure-strain term and the mixing layer growth rate.

It is proposed that the main effect of compressibility comes from modified
pressure fluctuations. That the pressure fluctuation must change is evident when
one considers that the typical pressure fluctuations in incompressible flow, nor-
malised by ρ1U

2
1 would lead to negative pressures in high Mach number flow, since

the free-stream pressure drops relative to ρ1U
2
1 as 1/(γM2). Thus, we propose

to model ΠR
11 as:

ΠR
11 = p∗(M)(ΠR

11)M=0, (9.29)

where p∗(M) contains the effect of reduced pressure fluctuations. In the isotropic
approximation the mixing layer growth rate would be proportional to p∗(M).

124



To estimate p∗(M) we assume that

p∗(M) =
(pmax − pmin)M
(pmax − pmin)0

, (9.30)

where pmax and pmin will be estimated from a deterministic model of large vortex
structures in compressible shear flow, assumed to be representative of the typical
eddies that contribute to the rapid pressure-strain term.

9.3.2 Deterministic model for pressure extrema

Pressure minima in a flow can be identified with the cores of vortices, whereas
pressure maxima occur at stagnation points. We present a model for the pres-
sure minima first. A common description of a region of rotating fluid is the
Oseen vortex, which has been used before to represent vortices in mixing layers
(Papamoschou & Lele 1992). It assumes axisymmetric flow with the tangential
velocity given by

vθ =
Γ

2πr
(1 − e−αr2/R2

), (9.31)

where Γ is the circulation, R is the vortex size, and α = 1.256 is chosen such that
vθ = vθ,max at r = R.

In order to obtain the pressure minimum we turn to the inviscid radial mo-
mentum equation:

−1

ρ

∂p

∂r
=

v2
θ

r
. (9.32)

To include the effects of density variation on the pressure field inside a vortex
we need a model for the thermodynamics. Isentropic flow is not a possibility.
However we observe from two-dimensional simulations (Sandham & Reynolds
1989) at M = 0.6 that the temperature changes inside vortices developing in
temporal mixing layers are only 7% relative to the free stream, compared with
fluctuations of 40-50% for the density and pressure. With the assumption of
isothermal flow we can integrate (9.32) to get

pmin

p∞
= e−(γAv2

θ,max
/c2

∞
), (9.33)

where c∞ = (γp∞/ρ∞)
1
2 is the free-stream speed of sound and

A =
1

v2
θ,max

∫
∞

0

v2
θ

r
dr. (9.34)

We assume that A is a constant, equal to 1.69 for the Oseen vortex.
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The pressure drop is then a function of the maximum tangential velocity in
a vortex, vθ,max. A logical value for vθ,max is half the velocity difference,

vθ,max = 1
2∆U, (9.35)

which gives rise to a pressure drop of pmin − p∞ = −Aρ∞(1
2∆U)2 for incom-

pressible mixing layers (obtained from (9.33) for M → 0). For compressible flows
we define an eddy Mach number based on the velocity difference across the eddy,

Me =
2vθ,max

c∞
=

4vθ,max

∆U
M, (9.36)

where M is the convective Mach number. If equation (9.35) were used for all
Mach numbers, Me would become larger than unity for M > 0.5. However, the
conceptual ‘sonic-eddy’ model of Breidenthal (1990) implies that only eddies with
Me < 1 play a role in the turbulent energy cascade in a compressible flow. It is
therefore proposed that the following model be used for vθ,max:

vθ,max = min(1,
Mcrit

M
)1
2∆U. (9.37)

Mcrit is the critical Mach number beyond which vθ,max is affected by compress-
ibility. The value Mcrit = 0.5 corresponds to the sonic-eddy model in which the
largest eddies satisfy Me = 1. Without the sonic-eddy model we find that the
pressure in the vortex cores would drop down to near zero pressure, which is not
observed in the simulation results.

Next we turn to the prediction of the pressure maxima which corresponds
to stagnation points. Isentropic flow is a good approximation for the fluid on a
stream line towards a stagnation point and the standard relation yields (U1 =
−U2)

pmax

p∞
= (1 + 1

2(γ − 1)M2)γ/(γ−1). (9.38)

Above Mcrit we use the above formula with M = Mcrit, which corresponds to flow
stagnating around sonic eddies. For incompressible mixing layers the pressure rise
pmax−p∞ equals 1

2ρ∞(1
2∆U)2. This value is obtained if the limit M → 0 is taken

and is also predicted by Bernoulli’s law. Physically, the incompressible limit does
not necessarily mean that the velocity difference is reduced to zero; it can also
mean that the speed of sound tends to infinity.

The results for the pressure variations are summarised on figure 9.4. Smooth-
ing has been applied to the pressure data to remove the discontinuity in the slope
at Mcrit. This only affects the curves in the immediate vicinity of Mcrit. Figure
9.4a shows pressure relative to free-stream pressure plotted against Mach number.
The solid lines are the pressure in the core of the vortex and the pressure at the
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Figure 9.4: Results of the pressure model (a) pressure maximum and minimum
(solid lines) relative to the free-stream pressure, also showing the lowest possible
relative pressure corresponding to zero pressure in the vortex cores (dashed line), (b)
the pressure reduction function p∗(M) showing the strong reduction with increasing
Mach number for eddies contributing to the rapid part of the pressure-strain.

stagnation point. The dashed line shows the curve for zero pressure. It can be
seen how both the absolute relative core and stagnation pressures reduce as the
Mach number is increased to satisfy the constraint that the pressure cannot drop
below zero. Figure 9.4b shows the parameter p∗(M) defined by equation (9.30),
which is equal to the growth rate reduction if the Reynolds stress and dissipation
are isotropic. A simple qualitative explanation for the growth rate reduction is
that growth rate is proportional to pressure-strain and the pressure fluctuations
must reduce as the Mach number is increased to avoid negative pressures.

9.3.3 Anisotropy effects

We have seen that a simple isotropic picture of turbulence in the compressible
mixing layer is sufficient to explain qualitatively the growth rate reduction. How-
ever, for quantitative predictions we need to consider the anisotropy of the tur-
bulence. A certain amount of turbulence modelling is required to get a closed
form and we need to distinguish clearly where approximations are made. We
regard the following as accurate and well supported by the data: (a) P11 = 4δ′,
as derived in subsection 9.2.1, (b) negligible pressure-dilatation, and hence from
the turbulence kinetic energy equation ǫ = δ′(2− k), and (c) negligible dilatation
dissipation.

Our main model equation is equation (9.26), using the pressure reduction
function (9.30) on the rapid pressure-strain and the usual Rotta form for the
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Figure 9.5: Graph of the model prediction for growth rate δ′ (solid line), compared
with simulation data (symbols).

slow pressure-strain term. For the time being, isotropic dissipation is assumed
(e11 = 0). Thus,

δ′ =
c1p

∗(M) + c2ǫb11

8/3 − b11k
. (9.39)

Since there is a move to more streamwise turbulence structures as the Mach num-
ber is increased, it is expected that the anisotropy of the turbulence will change.
By analogy with other flows where streamwise structure becomes important we
expect the anisotropy b11 to increase. A model that leads to a relatively simple
closed-form solution is

b11 =
c3

δ′
(9.40)

Another possibility would be to model b11 as proportional to ǫ/k2 which has a
similar Mach number dependence to δ′.

Finally, we need to say something about the individual components. The
normal and spanwise stresses are assumed to be equal and to decrease according
to the growth rate

R22 = R33 = c4δ
′, (9.41)

Judging from the data, this is a very accurate choice.
As model constants we use c1 = 0.17 and c2 = 2.5, c3 = 0.009 and c4 = 9.

The Rotta constant c2 is the same as in usual second moment closures. All other
constants are estimated for incompressible flow (roughly equal to the M=0.2
simulation results).
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Figure 9.6: Turbulence statistics from model (solid lines) compared with simulation
data (triangles for 11-component, crosses for 22, diamonds for 33): (a) Reynolds
stress R11, (b) Reynolds stresses R22 and R33, (c) pressure-strain Π11, Π22 and Π33,
and (d) Reynolds stress anisotropy b11.

Putting all of the above together, we can derive a quadratic equation for the
growth rate aδ′2 + bδ′ + c = 0 where the coefficients are related to the model
constants by

a = 16/9 + c3c4(c2 − 1), (9.42)

b = −4/3c3(1 + c2) − 2/3c1p
∗(M), (9.43)

c = 1/2c1c3p
∗(M) + c2c

2
3. (9.44)

Only the largest root of the quadratic is realisable (positive ǫ) and once δ′ is
known all other quantities can be easily found.

Figures 9.5-7 give the predictions from the model up to M = 2, compared
with simulation data. Figure 9.5 shows the growth rate against M compared
with the simulation data. Figure 9.6-7 shows various turbulence quantities. The
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Figure 9.7: Turbulence statistics from model (solid lines) compared with simulation
data (triangles for 11-component, crosses for 22, diamonds for 33): (a) turbulence
kinetic energy k, (b) dissipation ǫ, (c) dissipation component ǫ11, and (d) dissipation
components ǫ22 and ǫ33.

behaviour for larger Mach numbers is of considerable interest, but we should
caution that there is little experimental or numerical data available between M =
1.2 and 2 to validate the model. The Reynolds stresses (figure 9.6a and 9.6b)
are in good agreement with the simulation results. The R22 and R33 components
decrease proportional to the growth rate, while the R11 component levels out
at about half its incompressible level. Figure 9.6c and 9.6d shows the pressure-
strain term and Reynolds stress anisotropy b11 compared with simulation data.
The pressure-strain term especially is in good agreement with the simulation data.
Turbulence kinetic energy k and dissipation ǫ are shown on figure 9.7a and 9.7b.
The dissipation is unaffected by compressibility at low Mach numbers and only
decreases by about a factor of two up to M = 2. The dissipation components
are shown on figure 9.7c and 9.7d, The lines show the results obtained if one
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combines the dissipation anisotropy with the Reynolds stress anisotropy in the
Rotta model. This needs no new constants as one can just take a small portion
of c2 (we take 4%) as referring to the dissipation anisotropy. On the whole the
anisotropic model gives a better representation of the dissipation components
than an assumption of isotropy. One must caution that the simulations have
all been conducted at low Reynolds numbers, and it may be that the turbulent
cascade is not over a sufficiently wide range of scales to set up isotropy in the
dissipation. Thus we cannot make definitive conclusions about the anisotropy of
dissipation.

The isotropic model predicts zero growth rate for infinite Mach number, since
the growth rate is proportional to p∗(M). The limiting growth rate for M → ∞
provided by the anisotropic model is obtained if p∗(M) = 0 is substituted in the
coefficients of the quadratic (9.42-9.44). Using the values of the model constants
proposed above, we obtain δ′ → 0.015 for M → ∞, which is about 20% of the
incompressible growth rate.

The model is well-conditioned, i.e. not very sensitive to variations in the model
constants. Additional calculations of the growth rate have been performed in
which each of the model constants was changed separately. The relative variations
of the growth rate were approximately equal or less than the relative changes of
the model constants.

9.4 Discussion

One important observation in this chapter has been that dilatation dissipation
and pressure-dilatation are not large in the compressible mixing layer, even when
eddy-shocklets are present. Turbulence models constructed using dilatation dis-
sipation or pressure-dilatation are not necessarily invalidated by this, but their
claim to be based on the correct physics of the flow would now appear to be false.
Some of the initial support for the dilatation dissipation concept came from simu-
lations of isotropic or fully homogeneous compressible turbulence. eddy-shocklets
were observed in isotropic and homogeneous shear flow (Lee et al. 1991; Blais-
dell et al. 1991) and the magnitude of the dilatational contribution to dissipation
was computed and compared with models for dilatational dissipation, for exam-
ple that of Sarkar et al. (1991). Blaisdell et al. found the model by Sarkar et

al. to be accurate for turbulent Mach numbers below 0.3. For larger turbulent
Mach numbers the dilatation dissipation was found to be constant at a level of
no more than 10% of the total dissipation. Also Lee et al. (1991) found only
5% dilatation dissipation at a turbulent Mach number of 0.5, whereas Sarkar’s
model would predict 25%. Thus, even in isotropic and homogeneous shear flow,
the dilatational terms cannot be regarded as essential in causing reduced growth
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Figure 9.8: Normalised growth rate against Mach number comparing the current
model (solid line) with the linear stability result (dashed line) and experimental data
from Goebel & Dutton (1991) (symbols).

rates. This is confirmed by recent work on homogeneous shear flow (Sarkar
1995), in which compressibility was found to affect other terms (e.g. production)
more than the dissipation. Another recent confirmation is the work by Simone
& Cambon (1995), which shows that the effect of compressibility is reflected in
pressure-strain correlations and related to the anisotropy of the Reynolds stress
tensor, rather than in explicit dilatation terms such as pressure-dilatation and
dilatation dissipation. The subject of the latter paper is also homogeneous shear
flow, studied by means of DNS and rapid distortion theory (Durbin & Zeman
1992, Cambon et al. 1993, Jacquin et al. 1993). Furthermore, a different form of
splitting the dissipation into solenoidal and dilatational parts has recently been
proposed (Huang 1995). This decomposition would predict even smaller dilata-
tional effects.

The mixing layer is very strongly affected by compressibility. Using the model
from this chapter, this can be explained by the large pressure fluctuations of the
typical eddies in the flow. Similarly large pressure fluctuations and hence Mach
number sensitivity would be found in jet and wake flows. Other flows, such as the
turbulent boundary layer on a wall, have comparatively much weaker pressure
fluctuations and the effects of compressibility do not appear until much higher
Mach numbers.

In the introduction it was remarked that the reduction in growth rates with
Mach number for the most unstable waves from linear stability theory matches
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almost exactly the reduction in shear layer growth rate of the fully turbulent flow.
On figure 9.8 we compare the growth rate reduction from temporal stability the-
ory with the result from the turbulence model of section 9.3.3 and experimental
data from Goebel & Dutton (1991). The latter is chosen because the density ratio
across the shear layer is always less than 2:1, so that these data are comparatively
insensitive to the model for incompressible growth rate used for normalisation.
As can be seen there is a good correlation between the two curves and the experi-
ments. To examine the relation further we consider the same averaging procedure
of section 9.2, applied to the linear stability results.

In temporal linear stability theory of the mixing layer the fluctuating variables
have the following form:

φ(x, y, z, t) = (φ̂r(x2) + iφ̂i(x2))e
ωit+i(αx1+βx3), (9.45)

where ωi is the temporal growth rate, α and β are the streamwise and spanwise
wavenumbers, i is the imaginary unit and φ̂r and φ̂i are the real and imaginary
part of the eigenfunction φ̂. The integrated diagonal Reynolds stress equations
reduce to

ωi‖û1‖2 = P̂11 + Π̂11, (9.46)

ωi‖û2‖2 = Π̂22, (9.47)

ωi‖û3‖2 = Π̂33, (9.48)

where ‖φ̂‖2 =
∫
|φ̂|2dx2 and the terms on the right-hand side reflect production

and pressure-strain:

P̂11 = −
∫

(ûr
1û

r
2 + ûi

1û
i
2)

dū1

dx2
dx2, (9.49)

Π̂11 = α

∫
(p̂iûr

1 − p̂rûi
1)dx2, (9.50)

Π̂22 =

∫
(p̂r dûr

2

dx2
+ p̂i dûi

2

dx2
)dx2, (9.51)

Π̂33 = β

∫
(p̂iûr

3 − p̂rûi
3)dx2. (9.52)

In the derivation we have assumed ρ̄ = 1 following Blumen (1970). The pressure
eigenfunction satisfies the following relation (Blumen 1970):

ωiM
2‖p̂‖2 = −Π̂kk. (9.53)

We observe that positive growth rate implies Π̂22 > 0, Π̂33 > 0, Π̂kk < 0 and,
consequently, Π̂11 < 0 and |Π̂kk| < |Π̂11|. Furthermore, negative Π̂11 implies
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Figure 9.9: Maximum and minimum pressures relative to free-stream pressure during
simulations at M = 0.2 (solid), 0.6 (dotted), 0.8 (dashed) and 1.2 (chain dotted),
showing the large reduction of pressure depressions as Mach number is increased.

positive P̂11. Hence, the production and pressure-strain terms in the linear regime
have the same sign as in the turbulent regime. One difference in the linear regime
is that an analogue of the relation between growth rate and production does not
seem to exist. Thus the equations cannot be closed in exactly the same way as
the equations for self-similar turbulent flow. We have solved the linear stability
problem for several Mach numbers from 0.0 up to 1.6 and obtained the most
unstable mode normalised with ‖û1‖ = 1 for each Mach number. Up to M = 0.6
the production and pressure-strain decrease in exact proportion to the growth
rate ωi, as in the turbulent case. However, above M = 0.6 the pressure-strain
drops more rapidly than production and both drop more rapidly than the linear
growth rate. The explanation for this latter behaviour is not clear but may
be related to the change to oblique disturbances in the stability theory above
M = 0.6. Furthermore, the square pressure fluctuation ‖p̂‖2 rapidly drops for
M > 0.6. Thus the pressure-dilatation Π̂kk, satisfying equation (9.53), stops
growing at high Mach number. Although we are not able to close the equations
in the linear regime, it does seem that substantially the same physical phenomena
are occurring, which goes some way towards explaining why the stability growth
rate matches the turbulent shear layer growth rate.

The agreement between the actual level of the pressure fluctuations and
the model predictions is reasonable. Figure 9.9 shows p+ = pmax − p∞ and
−p− = −(p∞−pmin) plotted against time as obtained from the simulations. The
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reference pressure p∞ equals 16.85, 1.98, 1.12 and 0.50 for the different Mach
numbers respectively. We observe large drop in p−, whereas p+ stays at a more
constant level. Since the values for p− at M = 0.2 are considerably larger than
p∞ at M = 1.2, p− must decrease with increasing Mach number in order to
keep the minimum pressure positive. However, whereas the actual level of p−

is in good agreement with the model prediction, p+ at higher Mach numbers is
larger than the model prediction. This could be due to different types of eddy
contributing to the pressure field. There are eddies that contribute to the rapid
pressure-strain (the part that depends on mean velocity gradients and modelled
in section 9.3) and eddies that contribute to the slow part. For the latter types
of vortices the pressures may be higher than those obtained with the isentropic
model. Furthermore, shocks will also give rise to higher pressure maxima than
predicted with isentropic assumptions, since the entropy of the fluid increases
when passing through a shock. The high pressure then comes from a supersonic
eddy which generates a shock wave. Supersonic eddies may be present in the flow,
but according to Breidenthal (1990) do not have time to rotate and contribute
to mixing and growth rate. If the parameter p∗(M) is corrected for higher pres-
sures at higher Mach numbers, the predicted growth rate will be somewhat larger.
Reasonable agreement with experimental and simulation data is nevertheless still
obtained, if pmax = p∞ + 0.5 is substituted in equation (9.30), assuming that p+

does not exceed its incompressible value (0.5 for ∆U = 2 and ρ∞ = 1).

9.5 Conclusions

Detailed analysis has been made of DNS-databases of compressible mixing lay-
ers with convective Mach number M ranging from 0.2 to 1.2. All simulations
contained a fully-resolved turbulent energy cascade to small spatial scales. The
simulations showed a reduction in growth rate matching the reduction found
in previous experimental work. Statistical information was extracted from the
databases to determine reasons for the reduced growth rate that is observed as
the convective Mach number is increased. It was found that the dilatational con-
tribution to dissipation is negligible even when eddy-shocklets were observed in
the flow. Also pressure-dilatation was not found to be significant. Therefore the
eddy-shocklets, and the dilatational terms in the averaged equations, were not
found to be important for understanding the reduced growth rate.

It was shown that reduced pressure fluctuations were responsible for the
changes in growth rate via the rapid pressure-strain term. The analysis was
based on the integrated equations for the Reynolds stress tensor and an accu-
rate relation between between the momentum thickness growth rate and the
integrated production of turbulence kinetic energy was derived. Furthermore,
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a deterministic model for the required pressure fluctuations was given based on
the structure of variable density vortices and the assumption that the limiting
eddies for the rapid pressure-strain term are sonic. Simple anisotropy consider-
ations closed the model which was then demonstrated to predict the variation
of integrated Reynolds stresses, pressure-strain terms, and dissipation, in good
agreement with the DNS-data.
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Chapter 10

Conclusions and

recommendations

In section 1.3 the main purposes of this thesis were stated: to advance the Large-
Eddy Simulation technique for compressible flows and to study the effects of
compressibility on physical processes in the turbulent mixing layer.

To advance LES for compressible flows, we focussed on subgrid modelling.
The essential subgrid-term in incompressible LES, the turbulent stress tensor τij,
is also the main subgrid-term in compressible LES. In addition the governing
equations for compressible LES contain the so-called energy subgrid-terms α1−6

(chapter 2).
The six subgrid-models for τij investigated in this thesis were formulated in

chapter 3. The models taken from literature are: the Smagorinsky, similarity, gra-
dient and dynamic eddy-viscosity models. The dynamic mixed model was also
proposed by others, but we altered the formulation in order to remove a math-
ematical inconsistency. Furthermore, we introduced the dynamic Clark model,
which is the gradient model supplemented with a dynamic eddy-viscosity. Us-
ing a 1D-analysis and 3D-simulations, the pure gradient model was shown to be
severely unstable. However, the instability can be overcome if sufficient viscosity
is added and, therefore, the dynamic Clark model was proposed. Furthermore, we
proposed an optimal value for the consecutive filter width needed if the dynamic
procedure is applied using top-hat filters.

In chapter 4 we showed that τij is positive definite if and only if the filter
function is positive. Among the three common filters, the top-hat and Gaussian
filters give thus rise to a positive subgrid kinetic energy k = τii/2, but the spectral
cut-off filter causes negative values of k. Such ’realizability conditions’ show that
the choice of a subgrid-model should take the filter type into account. Imposing
these conditions on eddy-viscosity models provided a lower bound for k.
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A systematic comparison of the six models for τij was performed using LES
and DNS of the mixing layer at low Mach number (chapter 5). The Large-Eddy
Simulations were compared with filtered DNS results in so-called a posteriori

tests and afterwards a set of Large-Eddy Simulations at high Reynolds number
was obtained for a case in which no DNS can yet be performed. From the a

posteriori tests it appeared that the dynamic models accurately model the dissi-
pation to subgrid scales, when compared to the other models. The most accurate
results were obtained with the (computationally most expensive) dynamic mixed
model. Comparison of the models at high Reynolds number confirmed the rela-
tive accuracy of the dynamic models, but revealed a somewhat different picture
regarding the best model within the group of dynamic models. If we desire the
turbulent state of the mixing layer to be as self-similar as possible, the dynamic
eddy-viscosity model seems to be better than the dynamic mixed and dynamic
Clark model. However, all dynamic models turned out to be much better than
the other (non-dynamic) models studied. The Smagorinsky model was too dissi-
pative, and simulations with the similarity and gradient model were unstable, like
the simulation without any subgrid-model. These simulations at high Reynolds
number illustrate the value of LES. In a case where DNS is not possible with the
current computer capacity, acceptable results are obtained using LES, provided
a good subgrid-model is used.

In chapter 6 we addressed the role of the numerical errors in LES. It appeared
that the results are not sufficiently independent of the specific numerical scheme
when the common filter width ∆ = h is used. The simulations should rather be
conducted but rather at ∆ = 2h, in which case the fourth-order scheme (a new
scheme based on weighted central differences, section 2.3) was found to be more
accurate than the second-order scheme.

Large-Eddy Simulations of a moderately (M = 0.6) and highly compressible
mixing layer (M = 1.2) were also conducted (chapter 7) and their results were
compared with DNS-data. Comparison of the dynamic eddy-viscosity and the
dynamic mixed model for τij in a posteriori tests showed that the first model is
more accurate at moderate and high Mach number. The energy subgrid-terms,
extensively studied in this chapter, do not play a major role in actual LES of these
compressible mixing layers. The a priori tests demonstrated that in the group
of energy subgrid-terms the four terms α1−4 are more or less equally important.
This is an interesting result, since in the compressible Large-Eddy Simulations re-
ported in literature only α1−2 are taken into account. We subsequently developed
new dynamic models for the energy equation modelling the four subgrid-terms
α1−4. The inclusion of these models for the energy subgrid-terms in LES of the
compressible mixing layer has very small effects on momentum related quantities
(even at M = 1.2), but the effects on thermodynamic quantities are larger and
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increase with Mach number. Furthermore, since energy subgrid-terms partially
cancel each other, omitting all energy subgrid-terms in LES was found to be
preferred over omitting α3−4 only.

The effects of compressibility on physical processes in the turbulent mixing
layer were studied by means of Direct Numerical Simulations in chapters 8 and
9. In chapter 8 DNS at convective Mach number M = 1.2 was performed. The
mixing layer at M = 1.2 could be simulated further into the nonlinear regime than
previous simulations reported in literature. It was the first time that shock-waves
were detected in numerical simulations of the three-dimensional mixing layer. A
numerical discretization scheme consisting of fourth-order central differences and
third-order upwind differences was proposed in order to capture shocks together
with an accurate representation of the transitional and turbulent flow features.
Shock-waves occurred at several times and existed for relatively short times. They
were found to be created by different types of turbulent vortices.

In chapter 9 we presented a new physical explanation for the mixing layer
growth rate reduction with increasing Mach number. Four DNS-databases cov-
ering the convective Mach numbers 0.2, 0.6, 0.8 and 1.2 were investigated by
calculating turbulent statistics. Previous explanations in literature assumed a
significant contribution of the dilatational terms in the Reynolds stress trans-
port equations. We showed that (even in the presence of shocks) these terms
are not important in compressible mixing layers. After the derivation of a re-
lation between momentum thickness and the production term, we were able to
connect the reduced growth rate to reduced pressure fluctuations through the
rapid pressure-strain term. A deterministic model was constructed, based on the
pressure fluctuations in compressible vortices, and modified to include anisotropy
effects. It predicts the growth rate reduction in good agreement with experimen-
tal and simulation data.

Finally a number of recommendations for future research are made. The
attempt to answer scientific questions always leaves some questions unanswered
and raises new questions.

At this point no definite answer can be given whether the dynamic eddy-
viscosity or the dynamic mixed model is most appropriate for LES. Tests at low
Mach number and relatively low Reynolds number showed the second model to
be the most accurate, in agreement with other recent work (Zang et al. 1993,
Wu & Squires 1995). However, in our high Reynolds number calculations and in
particular in our simulations at higher Mach number the dynamic eddy-viscosity
model led to better results. Although in section 5.3.2. a first attempt was made
to explain the different behaviour, the results should be further analysed to give
a complete explanation. Testing these models in another compressible flow would
be a useful extension.
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The energy subgrid-terms were found not to play an important role in the
compressible mixing layers in this thesis (even at M = 1.2). It would be interest-
ing to investigate the role of the energy subgrid-terms in mixing layers with large
free-stream temperature ratios. In such mixing layers turbulent diffusion and its
subgrid contributions are expected to be more prominent.

LES is attractive because of its applicability to flows where no DNS can
be performed with the current computers. We have performed LES for a high
Reynolds number mixing layer at low Mach number in a large computational
domain (section 5.4). To perform such simulations at higher Mach numbers too
and investigate whether a self-similar state is reached could be the next step.

Furthermore, the shocks present in the DNS at M = 1.2 could be explored in
relation with LES. Their effect on the structure of the turbulent stress tensor can
be investigated using a priori tests on the present DNS-database and possible
implications for subgrid-modelling could be deduced. Furthermore, in chapter
8 we used an upwind scheme when necessary to capture shocks. From the few
Large-Eddy Simulations that we performed at M = 1.2 (chapter 7), we did not
yet find such a scheme necessary in order to obtain good LES-results. It could
be that the dynamic eddy-viscosity is able to supply the additional dissipation
required to smooth the shock, but this issue certainly requires more research.

From chapter 9 it appeared that the compressible shear layer growth is not
connected to dissipation, but rather to production and pressure-strain. Produc-
tion is determined by the large scales and initiates the turbulent energy cascade,
whereas dissipation mainly happens at the small scales. It could indicate that the
large-scale turbulence is considerably altered by compressibility while the small
eddies keep a more incompressible character. This statement is in agreement with
our finding that, in order to obtain accurate LES, it does not seem necessary to
take compressibility effects into account in subgrid modelling by modelling the
energy subgrid-terms (chapter 7). The shock-waves obviously seem to contradict
the statement, since shocks are compressible phenomena that clearly contribute
to small scales. However, chapters 8 and 9 show that the shocks do not long
exist and marginally contribute to the turbulent statistics. Shocks not created
by turbulent vortices may have larger significance. An example is the flow over a
transonic wing, in which the shock strongly increases the displacement thickness
(Brandsma & Kuerten 1990). In any case more research is needed to study the
possibly different roles of compressibility in large- and small-scale turbulence.

In this thesis we simulated temporal mixing layers. Spatial simulations are
more realistic than temporal simulations, but require much more computer time.
However, it is feasible to study spatially developing compressible flows with LES.
Even DNS of such flows can soon be performed if the computer capacity continues
to increase. In future research the 3-D spatial compressible mixing layer could

140



be simulated, and the standard opinion that spatial and temporal mixing layers
have the essential things in common could be verified.

Although in recent years the knowledge about turbulence has increased and
progress in modelling has been made, much is still unknown about this compli-
cated phenomenon with so many different aspects. Thus, at the end of this thesis
the subject of turbulence looks even more challenging than at the beginning.
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Summary

The Large-Eddy Simulation technique of compressible flows and the effect of
compressibility on mixing layers are the main subjects of this thesis. Direct
Numerical Simulations (DNS) and Large-Eddy Simulations (LES) of the temporal
compressible mixing layer at various Mach and Reynolds numbers have been
conducted to investigate these subjects.

With respect to the LES technique, Large-Eddy Simulations have been per-
formed at convective Mach numbers 0.2, 0.6 and 1.2 and the results have been
compared with filtered DNS-data. It appeared that the dynamic subgrid-models
lead to relatively accurate results compared to the other models tested. The
dynamic approach turned out to yield acceptable results too in LES of a mix-
ing layer that currently cannot be simulated using DNS. Care has to be taken
to ensure that the numerical errors in LES are sufficiently small. It was found
that these errors are usually sufficiently small if the filter width equals twice the
grid-spacing. In addition to modelling the turbulent stress tensor, compressible
LES formally requires the modelling of the subgrid-terms in the energy equation,
which do not occur in incompressible LES. However, the compressible Large-
Eddy Simulations demonstrated that the turbulent stress tensor is the dominant
subgrid-term, even at convective Mach number 1.2. This important subgrid-term
was also investigated from a theoretical point of view and realizability conditions
for this tensor were derived.

Regarding compressibility effects in the mixing layer, shock-waves were found
in the three-dimensional DNS at convective Mach number 1.2. Furthermore, we
have investigated the cause of the mixing layer growth rate reduction with increas-
ing compressibility, using four DNS-databases covering the range of convective
Mach numbers from 0.2 to 1.2. It was found that the growth rate reduction can-
not be explained by the dilatational terms, but rather by the reduced pressure
fluctuations, leading to reduced pressure strain and turbulent production terms.
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