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An overset grid method for resolved simulation of incompressible (turbulent) flows 
around moving spherical particles is presented. The Navier–Stokes equations in spherical 
coordinates are solved on body-fitted spherical polar grids attached to the moving spheres. 
These grids are overset on a fixed Cartesian background grid, where the Navier–Stokes 
equations in Cartesian coordinates are solved. The standard second-order staggered finite 
difference scheme is used on each grid. The velocities and pressures on different grids 
are coupled by third-order Lagrange interpolations. The method, implemented in the form 
of a Message Passing Interface parallel program, has been validated for a range of flows 
around spheres. In a first validation section, the results of simulations of four Stokes 
flows around a single moving sphere are compared with classical analytical results. The 
first three cases are the flows due to a translating, an oscillating sphere and a rotating 
sphere. The numerically produced velocity and pressure fields appear to converge to the 
corresponding (transient) analytical solutions in the maximum norm. The fourth Stokes 
case is the flow due to an instantaneously accelerated sphere. For this case, the results 
are compared with the corresponding numerical solution of the Basset–Boussinesq–Oseen 
equation. In a second validation section, results of three Navier–Stokes flows around one or 
more moving spheres are presented. These test configurations are a moving face-centered 
cubic array of spheres, laminar channel flow with a falling a sphere, and freely moving 
small spheres in a Taylor–Green flow. Results for the flow with the falling sphere are 
compared with the results from the literature on immersed boundary methods.

© 2016 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

For particle-resolved direct numerical simulation of turbulent flows with embedded rigid particles several numerical 
techniques exist. A powerful technique is the so-called immersed boundary method. In this method the particle boundary 
is approximated on a Cartesian grid and its effect on the flow is accounted for by a forcing term, which is either a so-called 
direct forcing term or a continuous forcing term [1]. The grid is usually chosen to be uniform and the forced Navier–Stokes 
equations are typically solved in the domain including the interiors of the particles [2–6], although there are also variants 
that exclude the interiors of the particles [7]. The papers cited are only a few of the large amount of publications on this 
method. A second method is the lattice Boltzmann method, which is also usually applied on a uniform Cartesian grid [8]. 
Another method, Physalis, uses series of analytical solutions of the steady Stokes equations to bridge the narrow gaps 
between the uniform Cartesian grid and the particle surfaces [9]. In Physalis, the boundaries of the spherical particles are 
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implemented as sharp interfaces, such that, in contrast to immersed boundary and lattice Boltzmann methods, there is no 
explicit or implicit smoothing of the particle boundaries.

Traditionally, a body fitted grid is adopted to represent the boundary of an embedded object by a sharp interface, and 
then the flow around the object is solved by a finite difference, finite volume or finite element method or by a spectral or 
spectral element method (see [10] and [11] for applications of spectral methods to turbulent flows around a single fixed 
sphere). Also most commercial computational fluid dynamics packages are based on the body-fitted approach.

For flows around moving particles, the geometry of the flow domain changes in time. This is a challenge, in particular 
for methods using body-fitted grids. One way to deal with this problem is to use unstructured body-fitted grids, to let 
the grid points move and, if the grid has become too distorted, to project the solution on a new grid produced by an 
automatic generator for unstructured grids. In combination with a finite element method, this approach has been used by 
Johnson and Tezduyar [12] to simulate multiple spheres falling in a liquid-filled tube. Another way to handle the problem 
of the changing geometry is offered by the so-called overset grid method, also called composite mesh, overlapping grid or 
Chimera method. The main idea is to attach to each object a body-fitted structured orthogonal grid, which is overset on a 
background Cartesian grid, or on grids attached to other objects. Interpolation is used to connect the numerical solutions of 
two overlapping grids to each other.

The concept of overlapping grids was originally introduced for the solution of the Laplace equation and other elliptical 
partial differential equations on two dimensional domains with a complicated non-moving boundary [13,14]. For the simu-
lation of compressible flows around multiple objects, the Chimera overset grid method was developed [15], which has been 
used for many flow problems in aerospace engineering [16]. Moreover, Chesshire and Henshaw [17] presented a general 
method for the construction of colocated overlapping grids for the solution of partial differential equations, general in the 
sense that it can be used for an arbitrary number of overlapping grids and also for higher-order schemes for the spatial 
discretization and interpolations. They applied their method to the compressible Navier–Stokes equations. For the incom-
pressible Navier–Stokes equations, Henshaw [18] developed a fourth-order overset grid method and showed an application 
to steady flow around a sphere, in which the surface of the sphere was covered by two overlapping orthographic patches 
to avoid pole singularities. In this method the pressure is solved from a Poisson equation equipped with a damping term to 
keep the velocity divergence small. Others have used the artificial compressibility technique (instead of the pressure Poisson 
equation) in incompressible flow simulations on overset grids [19]. All overset grid methods mentioned in this paragraph 
were designed for colocated grids. It seems that, so far, none of them has been used for resolved simulation of particles in 
turbulent flows.

The first staggered overset grid method was developed by Burton and Eaton [20] and based on the standard second-order 
staggered approach by Harlow and Welch [21]. Staggered methods are known to be relatively robust, also in combination 
with standard central differencing. Furthermore, they naturally lead to a compact stencil of the discrete Laplacian of the 
pressure and a relatively straightforward treatment of the pressure near solid boundaries. The implementation of Burton 
and Eaton was developed for two fixed staggered grids: a spherical polar grid overset on a Cartesian background grid. 
The method was successfully applied to direct numerical simulation of turbulent incompressible flow around a single fixed 
sphere [22]. In each time step, the pressure Poisson equation was solved iteratively by a multigrid matrix factorization 
technique (a Schwarz alternating method), in which the Poisson equations on the two subdomains were each iteratively 
solved in turn, while the subdomain boundary conditions were obtained in the outer iteration loop by interpolation of the 
pressure gradient. Very recently, the staggered overset grid method for spherical particles was used in direct numerical 
simulation of turbulent flow modified by 64 fixed particles [23]. For that purpose the method was extended to multiple 
fixed particles. Instead of using an alternating method and interpolation of the pressure gradient, the BiCGStab method with 
interpolation of the pressure in each iteration was used to solve the pressure Poisson equation. The implementation was 
parallel, but limited to shared memory systems.

In the present paper, the staggered overset grid method is extended to (freely) moving spherical particles in incompress-
ible flow. Thus a staggered spherical polar grid is attached to each particle and all these grids are overset on the Cartesian 
background grid. The data structure of the interpolation and grid routines of the implementation in [23] has been altered 
to realize a parallel implementation based on MPI (Message Passing Interface), which is the standard for high performance 
computing on large distributed memory systems. In order to make the step of increased complexity not too large, we avoid 
interpolations from one spherical to another spherical grid in this paper. Thus the particles cannot collide. Narrow gaps 
between particles can in principle be simulated, but at high computational cost. This apparent limitation of the overset 
grid method is compensated by a number of advantages. Due to its body-fitted character, the method facilitates an accurate 
computation of the turbulence dissipation rate and other turbulence statistics of spatial derivatives in the direct vicinity of 
the particle surfaces, as demonstrated in [23]. Another attractive feature of the overset grid method is that by radial stretch-
ing of the spherical grids the total number of grid cells can be largely reduced without sacrificing fine resolution near the 
particles. The latter feature is particularly useful for resolved simulations of flows around small particles in dilute flows.

After a presentation of the governing equations in section 2 and a description of the staggered overset grid method 
in section 3, seven validation studies for moving spherical particles will be presented in sections 4 and 5. In section 4, 
we will consider simulations of four Stokes flows around a single moving sphere and compare the results with non-trivial 
analytical results. The cases are the Stokes flows due to a translating sphere, an oscillating sphere, a rotating sphere, and an 
instantaneously accelerated sphere. In section 5, we will present validation results of three Navier–Stokes cases: a translating 
array of spheres, a falling sphere in a channel, and eight freely moving small spheres in Taylor–Green flow.
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The material presented is novel in several respects. The first novelty is the extension of the staggered overset grid method 
to incompressible flows with moving spheres. Furthermore, pointwise convergence to analytical solutions is demonstrated in 
numerical tests, which is new in the context of moving spheres and 3D finite difference or finite volume methods. Moreover, 
the quantitative comparison of immersed boundary methods with a body-fitted method applied to a flow with moving 
spheres is novel. Also, resolved simulation of small moving spheres in incompressible three-dimensional Taylor–Green flow 
seems to have been performed for the first time.

Since the flow solver is a Navier–Stokes solver to simulate flows around an arbitrary number of spheres, it is called 
NSpheres. Source data of the validation simulations presented in this paper are available at www.vremanresearch.nl. Al-
though the MPI implementation opens the way to use the method for large-scale computations on many processors with 
one or more particles per processor, it is outside the scope of the present work to perform such computations. The purpose 
of this paper is to describe the method and to validate it for cases that can be simulated in reasonable time with use of a 
few parallel MPI processes.

2. Governing equations

We denote the Cartesian position vector by x = [x1 x2 x3]T . The Cartesian base vectors are denoted by e1, e2, e3. We 
consider a spherical particle embedded in the flow, centered at position xp . The particle radius is denoted by r0 and 
the particle diameter is denoted by dp = 2r0. The spherical coordinates around the particle are given by the nonlinear 
expressions

r = |x − xp|, θ = arccos(
x3 − xp

3

r
), φ = atan2(x2 − xp

2 , x1 − xp
1 ), (1)

where atan2(y, x) is the function that provides the argument of the complex number with real part x and complex part 
y, such that −π < φ ≤ π . Here r denotes the radial, θ the polar and φ the azimuthal coordinate. The base vectors of the 
spherical coordinate system are denoted by ẽ1 = ẽr , ẽ2 = ẽθ and ẽ3 = ẽφ and specified by the following orthogonal matrix

A = [er eθ eφ]T =
⎡
⎣ sin θ cosφ sin θ sinφ cos θ

cos θ cosφ cos θ sinφ − sin θ

− sin φ cosφ 0

⎤
⎦ . (2)

Equation (1) describes the (nonlinear) transformation from Cartesian to spherical coordinates. The inverse transformation is 
given by

x = xp +
⎡
⎣ r sin θ cosφ

r sin θ sinφ

r cos θ

⎤
⎦ , (3)

and the components can be written as x j = xp
j + r A1 j . If the last two columns of the matrix of partial derivatives (Jacobian 

matrix) of the inverse coordinate transformation are divided by r, then AT is obtained.
The translational and rotational velocity vectors of the particle are denoted by vp and ωp , respectively. The fluid velocity 

vector is denoted by u = [u1 u2 u3]T in the Cartesian coordinate system and by ũ = [ũ1 ũ2 ũ3]T = [ur uθ uφ]T in the 
spherical coordinate system. The latter two vectors are related through ui ei = ũi ẽi , which implies the following (linear) 
relationships between the Cartesian and spherical velocity components

ũ = A(u − vp), u = vp + AT ũ. (4)

In this paper, we will use the index notation and the summation convention (only for the indices i and j) in some equations, 
for example in the Navier–Stokes equations in Cartesian and spherical coordinates and in equations (13)–(14) and (22)–(23), 
to indicate more clearly in which form these equations, term by term, are used in the computer code. In addition, we use 
the comma notation for derivatives, for example ur,t = ∂ur/∂t (t denotes time), ur,θ = ∂ur/∂θ and u j,i = ∂u j/∂xi , for integer 
values i and j, while u j,ii denotes ∇2u j in Cartesian coordinates.

The form of the Navier–Stokes equations in the Cartesian frame of reference is given by

ui,i = 0, (5)

u j,t + (uiu j),i = −q, j + νu j,ii + g j + a j, (6)

for component j = 1, 2, 3, where ν denotes the kinematic viscosity and g the gravity vector, while a is a spatially constant 
acceleration term, useful for a driving force in combination with periodic boundary conditions for q. The latter is related 
to the physical pressure p through the definition q = p/ρ + a · x, where ρ is the constant fluid density. If we mention the 
pressure in this paper, we usually refer to q. The second term on the left-hand side of (6) is called the convective term. The 
four terms on the right-hand side are called the pressure gradient term, the viscous term, the gravity term and the forcing 
term, respectively.

http://www.vremanresearch.nl
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In the spherical frame of reference of a particle, the following form of the Navier–Stokes equations is used:

(r2ur),r

r2
+ (uθ sin θ),θ

r sin θ
+ uφ,φ

r sin θ
= 0, (7)

ur,t + (r2urur),r

r2
+ (uruθ sin θ),θ

r sin θ
+ (uruφ),φ

r sin θ
− u2

θ + u2
φ

r
= −q,r +

ν
(
∇̃2ur + 2

ur

r2
+ 2

ur,r

r

)
− A1i v p

i,t + A1i(gi + ai), (8)

uθ,t + (r2uθ ur),r

r2
+ (uθ uθ sin θ),θ

r sin θ
+ (uθ uφ),φ

r sin θ
+ uθ ur − u2

φ cot θ

r
= −q,θ

r
+

ν
(
∇̃2uθ + 2

ur,θ

r2
− uθ + 2uφ,φ cos θ

r2 sin2 θ

)
− A2i v p

i,t + A2i(gi + ai), (9)

uφ,t + (r2uφur),r

r2
+ (uφuθ sin θ),θ

r sin θ
+ (uφuφ),φ

r sin θ
+ uφur + uφuθ cot θ

r
= − q,φ

r sin θ
+

ν
(
∇̃2uφ + 2ur,φ sin θ + 2uθ,φ cos θ − uφ

r2 sin2 θ

)
− A3i v p

i,t + A3i(gi + ai). (10)

Applied to a scalar c, the Laplace operator in spherical coordinates appearing in these equations is given by

∇̃2c = (r2c,r),r

r2
+ (c,θ sin θ),θ

r2 sin θ
+ c,φφ

r2 sin2 θ
. (11)

Impermeability and no-slip conditions are imposed at the particle surface (r = r0), which means that the fluid velocity 
should be equal to the surface velocity of the solid particle: u = vp + r0ωp × er at r0. The surface spherical velocity compo-
nents are derived by substituting (2) into ũ = A(u − vp) = r0A(ωp × er):

ur = 0, (12)

uθ = r0ω
p
j A3 j, (13)

uφ = −r0ω
p
j A2 j. (14)

These expressions and the continuity equation (7) imply that ur,r = 0 at r = r0.
The equations that govern the particle motion are given by:

xp
,t = vp

,t, (15)

ρp V pvp
,t = Fp + ρp V pg + ρV pa, (16)

I pω
p
,t = Tp, (17)

where ρp is the particle density, V p = πd3
p/6 the particle volume and I p = ρpd2

p V p/10 the moment of the inertia of 
the particle. The expressions for the particle force Fp and particle torque Tp are based on the stress tensor in spherical 
coordinates,

τ = ρ(−qδi j + ν(Gij + G ji))ẽi ẽ j, (18)

where δi j is the Kronecker delta and the tensor Gij ẽi ẽ j with

G =
⎡
⎣

ur,r uθ,r uφ,r
ur,θ

r − uθ

r
uθ,θ

r + ur
r

uφ,θ

r
ur,φ

r sin θ
− uφ

r
uθ,φ

r sin θ
− uφ cot θ

r
uφ,φ

r sin θ
+ ur

r + uθ cot θ
r

⎤
⎦ (19)

is the gradient of the velocity expressed in the spherical coordinate system [24].
Since the outward normal of the particle surface S p is equal to ẽ1, we write

Fp =
∫

S p

τ · ẽ1dS = ρ

∫

S p

(
(−q + 2νG11)ẽ1 + ν(G12 + G21)ẽ2 + ν(G13 + G31)ẽ3

)
dS, (20)

Tp =
∫

S p

r0e1 × (τ · ẽ1)dS = ρν

∫

S p

(
r0(G12 + G21)ẽ3 − r0(G13 + G31)ẽ2

)
dS. (21)

At the particle surface, ur = 0 and ur,r = G11 = 0, while the former also implies ur,θ = 0 and ur,φ = 0. Since the components 
of the spherical base vectors are given by (2) and uθ and uφ by (13) and (14), the integrals over G21ẽ2 and G31ẽ3 vanish. 
Thus the components of the particle force and particle torque can be written as
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Fig. 1. (a) Two-dimensional illustration of an overlapping Cartesian (Cart) and spherical domain (Sph) around a particle (Par). The overlap region is denoted 
by Cart + Sph. (b) Two-dimensional illustration of the three concentrical spheres with radii r0, ra and rb .

F p
j = ρr2

0

2π∫

0

π∫

0

(
− q A1 j + ν(uθ,r A2 j + uφ,r A3 j)

)
sin θ dθ dφ, (22)

T p
j = ρr2

0ν

2π∫

0

π∫

0

(
(r0uθ,r − uθ )A3 j − (r0uφ,r − uφ)A2 j

)
sin θ dθ dφ. (23)

All fluid variables that appear in the latter two expressions are evaluated at r = r0. The force Fp is naturally decomposed 
into a pressure part Fp,q and a viscous part Fp,ν . If q is periodic in a direction and gravity acts in that direction, buoyancy 
enters through the term ρa (a = −g for a system at rest).

3. Computational method

In this section, the staggered overset grid method for moving particles is explained. Subsection 3.1 contains a basic 
description of the numerical method. The description is basic in the sense that the explanation of grid structures, interpo-
lations, boundary conditions and parallelization are described in general terms or omitted. The technical explanation of the 
grid structure and interpolation procedure is provided in subsections 3.2, 3.3 and 3.4. In subsections 3.5 and 3.6, all activ-
ities during the initialization and time step are listed, including explanations of several details (on the implementation of 
boundary conditions, for example). Additional information and discussion of the parallelization can be found in Appendix A, 
and the interpolation formulas can be found in Appendix B.

3.1. Basic description of the numerical method

The present overset grid method is based on the standard second-order staggered discretization scheme for incompress-
ible flow. Thus the velocity components are defined at the faces of a given grid cell. More specifically, velocity component i
is defined at the faces whose normal vector is aligned to the unit vector of direction i. The pressure and the discrete velocity 
divergence are defined at the center of the cell, such that the continuity equation reduces to the balance of the volumetric 
flows through the cell faces. The advantage of the staggered scheme is that the discrete velocity divergence and pressure 
gradient operators are computed on the most narrow stencils possible. In each direction, the stencils of these operators are 
only one grid spacing wide (the distance between two grid points). This automatically provides a tight coupling between 
the pressures at adjacent grid points, and staggered schemes are therefore known to be relatively robust.

We consider a rectangular computational domain 
c = [0, L1] × [0, L2] × [0, L3] with Np spherical particles of diame-
ter dp . The domain 
c includes the regions inside the particles. The domain that excludes the volumes occupied by the 
particles is denoted by 
 and changes with time if the particles are moving. A two-dimensional illustration of a Cartesian 
and a spherical domain is shown in Fig. 1. The radii of the three concentrical spheres in Fig. 1(a) are denoted by r0, ra
and rb , and these are visualized in Fig. 1(b). The particle is represented by the inner circle (r ≤ r0). The interior of the 
spherical domain is represented by the two rings around the particle (r0 < r < rb). The interior of the Cartesian domain 
is represented by the second ring and the white region outside (r > ra). The union of the Cartesian and spherical domain 
represents 
 (r > r0). The intersection of the Cartesian and spherical domain is the second ring. This is the region where 
the domains overlap. The Navier–Stokes equations in Cartesian coordinates are solved on the Cartesian domain, which is 
meshed by a staggered Cartesian grid. The Navier–Stokes equations in spherical coordinates are solved on each spherical 
domain, which is meshed by a staggered spherical grid, which can be stretched in the radial direction. The discretization on 
each domain is based on the standard second-order finite difference scheme for incompressible flow. The solutions on the 
different domains are connected through third-order Lagrange interpolations: the fluid variables at (or near) each spherical 
boundary (at r = ra) of the Cartesian domain are obtained from the spherical solution and the fluid variables at (or near) 
each spherical boundary (at r = rb) of the spherical domain are obtained from the Cartesian solution.



274 A.W. Vreman / Journal of Computational Physics 333 (2017) 269–296
The rectangular domain 
c is partitioned into M = M1 × M2 × M3 rectangular blocks. The total number of MPI processes 
is equal to M . Each one of the M processors contains a Cartesian field, which we define as the numerical solution on the 
intersection of a given block and the interior of the entire Cartesian domain. Each block is equipped with a Cartesian grid 
which contains Nk/Mk cells in the xk direction, such that all blocks together contain N1 × N2 × N3 grid cells. A spherical 
polar grid of Nr × Nθ × Nφ cells is attached to each particle. The numerical solution of the Navier–Stokes equations in 
spherical coordinates around a given particle is called a spherical field. Each processor contains up to N p1 spherical fields, 
where Np1 is the smallest integer number satisfying Np1 ≥ Np/M .

We proceed with an overview of the algorithms used in each time step. We distinguish between three parts of the time 
step, in which the variables are updated from time level n to n +1 (the time level is included in the superscripts). At the end 
of each part the interpolation procedure is performed for the velocity, which means that the velocity interpolations from 
Cartesian to spherical grids and vice versa are performed and that the boundary conditions are applied. For conciseness, 
the terms of the Navier–Stokes equations are grouped in vectors. However, from the expressions in index notation in the 
previous section, the contents of the vectors can be deduced.

In the first part of the time step, the positions and the translational and angular velocities of the particles are updated:

xp,n+1 = xp,n + �t vp,n, (24)

vp,n+1 = vp,n + �t (Fp,n + ρp V pg + ρV pan)/(ρp V p), (25)

ωp,n+1 = ωp,n + �t Tp,n/I p, (26)

where �t is the length of the time step. Then the first intermediate fluid velocities, u∗ and ũ∗ , are obtained:

u∗ = un, ũ∗ = ũn − A(vp,n+1 − vp,n). (27)

The last expression accounts for the term −Avp
,t in (8) to (10). Afterwards, the new surface velocities are computed by 

substituting the angular velocity at level n + 1 into equations (13)–(14). Then the interpolation procedure is applied to u∗
and ũ∗ .

In the second part of the time step, the second intermediate velocities, u∗∗ and ũ∗∗ , are computed. For each spherical 
domain, ũ∗∗ is obtained by solving

(I − 1
2 �t(−H̃∗

φ + J̃φ))ũ∗∗ = ũ∗ + 1
2 �t(−H̃∗

φ + J̃φ)ũ∗ + �t(−H̃∗ + J̃∗), (28)

where I is the identity matrix, H̃∗
φ the coefficient matrix of the convective derivatives with respect to φ (the coefficients 

depend on u∗
φ ) and J̃φ the coefficient matrix of the viscous second-order derivatives with respect to φ. The other convective 

terms are denoted by H̃∗ , while the other viscous terms and the forcing terms are denoted by J̃∗ (which does not include 
−Avp

,t since that term is treated in the first part of the time step). All terms in −H̃∗ + J̃∗ are based on ũ∗ . After evaluation 
of the right-hand side, Gauss elimination of the tri-diagonal systems is used to obtain ũ∗∗ in each spherical domain. The 
second intermediate velocity u∗∗ in each Cartesian block is computed by

u∗∗ = u∗ + �t(−H∗ + J∗), (29)

where H∗ represents the Cartesian convective terms and J∗ the Cartesian viscous and forcing terms, all based on u∗ . For 
the spatial discretization, standard second-order central difference approximations are applied to the convective and viscous 
terms. The discretization of each term is based on the form specified in section 2. In the discretization of the convective 
terms, appropriate averages of velocity components over two points with weights 1

2 and 1
2 are used before a velocity 

component is squared or two velocity components are multiplied. The second part of the time step is completed by applying 
the interpolation procedure to u∗∗ and ũ∗∗ .

In the third part of the time step is the pressure Poisson equation problem is solved for overset grids (see [23], but as 
the notation was slightly different there, the description is repeated below). The pressure Poisson equations of all domains 
are assembled and solved as a combined linear system. The augmented matrix approach of [18] is used, which means that 
an extra variable and an extra equation are introduced to overcome the singularity of the original linear system. The discrete 
system of equations for the pressure q is given by

ck(∇2q)k + b = ck(∇ · u∗∗)k/�t at all internal pressure points k of all Cartesian grids,

ck(∇̃2q)k + b = ck(∇̃ · ũ∗∗)k/�t at all internal pressure points k of all spherical grids,
Nq∑

k=1

qk = 0, (30)

where ∇2 and ∇· represent the discrete Laplacian and divergence in Cartesian coordinates, while ∇̃2 and ∇̃· represent the 
discrete Laplacian and divergence in spherical coordinates. The forms of the discrete Laplacians follow from the approxi-
mations of the continuity equation and the pressure gradient term by straightforward second-order central differences on 
staggered grids. The system contains Nq +1 equations and Nq +1 unknowns, where Nq is the total number of internal points 
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Table 1
Array definitions for the pressure and the staggered velocity components in each Cartesian block and each spherical domain. For the original grid points, 
the ranges of the grid indices i, j, k of the three coordinate directions are specified in the last three columns.

Variable Array definition Original i Original j Original k

Cartesian q (0 : N ′
1 + 1,0 : N ′

2 + 1,0 : N ′
3 + 1) 1 : N ′

1 1 : N ′
2 1 : N3′

u1 (−1 : N ′
1 + 1,0 : N ′

2 + 1,0 : N ′
3 + 1) 1 : N ′

1 1 : N ′
2 1 : N ′

3
u2 (0 : N ′

1 + 1,−1 : N ′
2 + 1,0 : N ′

3 + 1) 1 : N ′
1 1 : N ′

2 1 : N ′
3

u3 (0 : N ′
1 + 1,0 : N ′

2 + 1,−1 : N ′
3 + 1) 1 : N ′

1 1 : N ′
2 1 : N ′

3
Spherical q (0 : Nr + 1,0 : Nθ + 1,0 : Nφ + 1,1 : N p1) 1 : Nr 1 : Nθ 1 : Nφ

ur (0 : Nr ,0 : Nθ + 1,0 : Nφ + 1,1 : N p1) 1 : Nr − 1 1 : Nθ 1 : Nφ

uθ (0 : Nr + 1,−1 : Nθ + 1,0 : Nφ + 1,1 : N p1) 1 : Nr 1 : Nθ − 1 1 : Nφ

uφ (0 : Nr + 1,0 : Nθ + 1,−1 : Nφ + 1,1 : N p1) 1 : Nr 1 : Nθ 1 : Nφ

in all domains. The last equation is the extra equation and the extra variable is b (b converges to zero in the limit of zero 
grid size). The coefficients ck represent normalization coefficients, such that all diagonal elements of the first Nq rows of the 
coefficient matrix are equal to 1. The total linear system to be solved is written as Cy = z, where C is the (Nq + 1) × (Nq + 1)

coefficient matrix, y the vector of unknowns and z the vector of right-hand sides of (30). The system Cy = z is iteratively 
solved by the BiCGstab(1) method [25]. The starting pressure is the pressure from the previous time step. In each iteration 
the pressure is interpolated from Cartesian to spherical grids and vice versa. The velocities at time level n + 1 are obtained 
by projecting the intermediate velocities on the space of functions that is (approximately) divergence free:

un+1 = u∗∗ − �t ∇q, ũn+1 = ũ∗∗ − �t ∇̃q, (31)

where ∇ and ∇̃ represent the discrete gradient operators, in Cartesian and spherical coordinates respectively. Like the first 
and second part of the time step, the third part of the time step is completed by applying the interpolation procedure to 
the velocities, this time to un+1 and ũn+1.

3.2. Numbering of blocks, particles and grids

As mentioned above, the rectangular domain 
c is partitioned into M = M1 × M2 × M3 rectangular blocks, the so-called 
physical blocks. The physical blocks and corresponding grids are numbered with the negative grid numbers −1, −2, ..., −M
(grid identification numbers). To account for periodic directions, a single layer of shadow blocks is defined around the 
rectangular domain. Each shadow block is labeled with a negative number less than −M and larger than or equal to 
−(M1 + 2)(M2 + 2)(M3 + 2). For each block, a reference position vector is defined, which refers to the bottom left front 
corner of the block.

The spherical domains and the corresponding grid identification numbers are indicated with the positive grid identifica-
tion numbers 1, 2, ..., Np . The reference position vector of each spherical domain is given by xp and corresponds to r = 0. 
Each xp is updated such that it always remains inside 
c . In addition to the Np physical particles, shadow particles are de-
fined to account for periodic boundary conditions. These shadow particles are shifted copies of physical particles such that 
the centers of the shadow particles reside in the shadow blocks outside 
c . For each shadow particle, the corresponding 
physical particle number is stored in a pointer array. The number of particles including shadow particles is called the virtual 
particle number. This number is in general larger than the number of spherical grids, which is equal to the true number of 
particles, Np . For each block, a block list of particles is defined that contains the numbers of all particles whose cell centers 
lie inside the block. In addition a pointer array is defined which contains for each block the number of the physical block 
(and its grid), while it contains for each particle the number of the physical particle (and its grid).

The Cartesian grids of the blocks can be stretched, but in this paper we assume them to be uniform, and we also assume 
that each block has the same dimensions. Furthermore, all spherical grids are the same. Grids are essentially partitions of 
certain domains into grid cells. The corners of the grid cells are usually called vertices or nodes. The vertices are often not 
the locations where the discrete flow variables are defined. In the staggered method, the pressure is defined at the cell 
centers, and velocity component i is defined at the centers of each cell face whose normal vector points in direction i. In 
this paper, each location where the discrete pressure or a discrete velocity component is defined is called a grid point.

The structure of the Cartesian and spherical grids makes it convenient to store, on each processor, the Cartesian fields as 
three dimensional arrays and the spherical fields as four dimensional arrays, as shown in Table 1. The original grid points, 
the grid points inside the Cartesian blocks and the grid points inside the spherical domains, are defined by the ranges of 
the grid indices listed in the last three columns of Table 1. Each Cartesian grid has N ′ = Nk/Mk original pressure grid points 
in direction xk . The corresponding N ′

1 × N ′
2 × N ′

3 original cells cover the Cartesian block. Likewise, each spherical domain 
(r0 ≤ r ≤ rb , 0 ≤ θ ≤ π and −π < φ ≤ π ) is covered by Nr × Nθ × Nφ original cells. Each point that is not an original point is 
a dummy point by definition. The dummy grid points are located on the boundary or just outside the boundary of a domain 
and are used to account for boundary conditions or parallel communication or interpolation.

The indices in the direction of a staggered quantity refer to staggered locations. Staggered quantities have some grid 
points on the boundaries of the domain. For example, a grid point of the staggered ur velocity lies on the particle surface if 
the original i index for the ur velocity is zero, which refers to a dummy location. For a staggered quantity near a boundary 
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Fig. 2. Overview of the different categories of grid points.

Fig. 3. Two-dimensional illustration of a spherical grid attached to a particle (a), overset on the Cartesian grid of a block (b). Both plots represent the same 
region of the overall domain 
c . The center of the particle (at x1 = x2 = 0) lies outside the region shown. The grid cells around the internal pressure points 
are indicated by the meshes of thin solid lines. The three thick circular lines denote the three concentrical surfaces with radii r0 (inner solid circle, the 
particle surface), ra (dashed circle) and rb (outer solid circle). The dots denote internal (and boundary) pressure points. The pluses denote interpolation 
points. The interpolation stencil corresponding to the enlarged plus in (a) is indicated by the encircled points in (b). Passive points are not shown.

that is not a wall, an extra dummy layer is required at index i = −1. This layer is not required for the discretization of 
derivatives, but is convenient for the interpolation stencil (this will be clarified later on). Since in this paper we assume that 
the interpolation stencils do not use points outside the physical domain, no extra dummy layer is required for the normal 
velocity at a wall. In Table 1, it is assumed that the block end faces are no walls. For example, if the x1 end face were a 
wall, the original i index for u1 would run up to N1 − 1, i = N1 would coincide with the wall and thus be a dummy point, 
and i = N1 + 1 would not play any role.

3.3. Interpolation points

In addition to the distinction between original and dummy points, we classify all grid points into four categories: internal
points, where the Navier–Stokes equations are discretized; interpolation points (query points), where the pressure or a 
velocity component is obtained by interpolation; boundary points, which are dummy points used to implement the boundary 
conditions; and passive points, which (temporarily) play no role in the numerical scheme. Each original point is either an 
internal point, an interpolation point, or a passive point. Each dummy point is either an interpolation point, a boundary 
point, or a passive point. The relation between the two classifications is visualized in Fig. 2.

The characterization of the staggered grid points is derived from the characterization of the pressure grid points (the cell 
centers), and therefore we consider the pressure grid points first. For each spherical grid, the internal pressure grid points 
are precisely the original grid points, while the interpolation points are the dummy grid points with r > rb (see Fig. 3(a)). All 
other dummy pressure grid points are boundary points. The spherical grids have no passive points. For the Cartesian grids, 
the characterization of points is determined by ra , the radius that is used to cut holes in 
c . If a Cartesian pressure point is 
located inside a sphere with radius ra around a particle (see Fig. 3(b)), then the point is an interpolation or a passive point. 
Otherwise, it is an internal or a boundary point. If the point is an interpolation or a passive point, it is a passive point if 
none of the six direct neighbours is an internal or a boundary point.

In view of the characterization of points explained above, type arrays are defined, which are integer arrays with a similar 
structure as the floating point arrays in Table 1 (but each Cartesian type array has one extra dummy layer around the 
block). The types of the pressure points of a given Cartesian grid with grid identification number b are set in two rounds. 
In the first round, the nearest particle is determined for each Cartesian pressure point (the distance to the nearest particle 
center is equal to the minimum of the distances to all the particles in the block lists of the block under consideration 
and the 26 surrounding blocks). If the distance to the nearest particle is less than ra , then the type is set equal to the grid 
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identification number of the nearest particle (which can be a shadow particle), otherwise the type is set equal to the default 
type, which is b. The first round includes the outer dummy layers, which are the extra dummy layers just mentioned. In 
the second round, in another loop performed over all Cartesian pressure points except those in the outer dummy layers, 
the type is overwritten by 0 if the type of none of the six direct neighbours is equal to b. The result of these two rounds 
can be summarized as follows. If the type of a grid point is equal to b the point is either an internal or a boundary point 
(to distinguish between internal and boundary points, the values of the grid indices i, j and k of the three coordinate 
directions are used). If the type is zero, the grid point is passive. However, if the type is unequal to zero and unequal to b, 
then the grid point is an interpolation point and the type value represents the grid identification number from which the 
fluid variable at the grid point under consideration is interpolated.

The types of the staggered points are derived from the types of the two nearest cell centers (each staggered point is 
located on a face that joins two neighbouring cells). If the type numbers of these center points are the same, the type is 
copied to the staggered type. If one of them is zero, the type of the staggered point is also set to zero (passive). If one of 
them is an internal point and the other one an interpolation point, the staggered point is an interpolation point. Although 
the staggered velocity points are not explicitly indicated in Fig. 3, above explanation may be clarified by mentioning that 
the spherical staggered points located on the two thick solid circular lines and the Cartesian staggered points on the step 
line twined around the dashed circular line are not internal grid points, but interpolation points (r = rb and inner step line) 
or boundary points (r = r0).

For a given interpolation point, the grid on which the interpolation stencil is defined (say grid a) is called the donor grid, 
while the grid to which the interpolation point itself belongs is called the acceptor grid. Each interpolation stencil contains 
3 × 3 × 3 points. The type of each point of the interpolation stencil should be equal to a, which means that each point of 
the interpolation stencil should either be an internal point or a boundary point. Furthermore, a boundary point due to a 
wall is not allowed to be a member of an interpolation stencil, except if it is a boundary point for the wall normal velocity 
on the wall. The interpolation stencil is chosen such that the position of the interpolation point is not further away from 
the central point of the stencil than from any of the other 26 points of the stencil. As an example, we consider the pressure 
interpolation point indicated by the enlarged plus symbol in Fig. 3(a). For this point, the Cartesian grid is the donor grid 
and the spherical grid is the acceptor grid. The 3 × 3 encircled Cartesian pressure points near the bottom right corner of 
Fig. 3(b) are a two-dimensional representation of the interpolation stencil. If Figs. 3(a) and 3(b) had been overlaid, then the 
interpolation point would have shown up inside the cell around the central point of the interpolation stencil.

To allow direct access to the interpolation points and the interpolation stencils, appropriate lists are defined: acceptor, 
primary donor and secondary donor lists (separate lists for the pressure and for each velocity component). The acceptor 
lists of a given grid b contain the grid indices (i, j, k) of the interpolation points on grid b. For the Cartesian grids, only 
the interpolation points that are also original points are put in the acceptor lists. For each interpolation point of b, there 
is a donor grid a, which contains the interpolation stencil. The acceptor lists are sorted with respect to the donor grid 
numbers and then mapped upon primary donor lists. The primary donor lists of grid a contain the acceptor grid numbers 
and the acceptor grid indices (i, j, k) of all interpolation points for which grid a is the donor grid or, in other words, all 
interpolation points that are interpolated from grid a. The distinction between acceptor and primary donor lists is useful 
for the MPI parallelization (see Appendix A). Further information for the interpolations is computed and stored in the 
secondary donor lists, such as the indices of the reference corner of the interpolation stencils and the weights wijk of 
the interpolations. While for each pressure interpolation point 27 weight coefficients are stored, 81 weight coefficients are 
stored for each interpolation point of a velocity component, because due to the staggered grids, 3 interpolation stencils are 
used per interpolation point per velocity component. The definition of the interpolation weights can be inferred from the 
interpolation formulas specified in Appendix B.

3.4. The radial grid

The grid in the r direction can be uniform or stretched. The cell center radial locations rc
i are defined by

rc
i = r0 f (i − 1/2), (i = 0,1, ..., Nr + 1), (32)

where f (ξ) represents the stretching function, i denotes the grid index, while i = 0 and i = Nr + 1 represent dummy 
locations. The staggered radial locations of the ur velocity are defined by

rs
i = r0 f (i), (i = 0,1, ..., Nr), (33)

where i = 0 and i = Nr represent dummy locations. The radial grid size is defined by �rc
i = rs

i − rs
i−1 at location rc

i and 
by �rs

i = rc
i+1 − rc

i at location rs
i . If we wish to simulate a case in which particles are relatively close to each other, we 

may want to minimize Nr and �r. Then a uniform radial grid seems to be a suitable option, which is obtained if f (ξ) =
1 + ξ(�r)/r0 and �r = (rb − r0)/Nr . If stretching is used in the radial direction, we choose f (ξ) = exp(γ ξ) with stretching 
factor γ = �θ = π/Nθ [23], which implies that �rc

1 ≈ r0�θ . In all cases rs
0 = r0 = dp/2.

It is possible to derive sufficient conditions for ra (the radius of the holes in the Cartesian grid) and rb (the radius of the 
outer boundaries of the spherical grids), such that each point of an interpolation stencil is ensured to be an internal point 
or a staggered dummy point on a solid wall. For simplicity, we consider uniform Cartesian grids with the same grid spacing 
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Fig. 4. One-dimensional illustration of the grid structure for the pressure. A uniform spherical grid with Nr = 5 (a) and a nonuniform spherical grid with 
Nr = 15 (b) are overset on uniform Cartesian grids. The thick vertical lines represent the three concentrical surfaces with radii r0 (inner solid circle), ra

(dashed circle) and rb (outer solid circle). Only internal (thick dots) and interpolation (pluses) pressure points are shown. A row of three encircled dots 
represents the interpolation stencil corresponding to the interpolation point (plus) drawn just above or below the stencil.

h in each direction. Without loss of generality we assume that xp = 0 for the nearest particle. A one-dimensional illustration 
of two basic grid configurations used in this paper is shown in Fig. 4. The left and right grids in each subplot represent the 
spherical grid and Cartesian grid, respectively. The right grids have been shifted slightly downward, for clarity.

Consider a pressure or velocity interpolation point of the Cartesian grid located at x. From the definition of the inter-
polation point, we infer that |x| ≥ ra − h. The interpolation stencils of x do not include a dummy point inside a particle if 
|x| ≥ rs

1 = r0 + �rc
1, which is ensured if

ra − h ≥ rs
1. (34)

Furthermore, |x| < ra for a pressure location and |x| < ra + 1
2 h for a velocity location. The radius of each outer dummy 

point of the spherical grid is at least rb . Thus the velocity interpolation stencil does not include outer dummy points of the 
spherical grid if |x| < rc

Nr−1, which is ensured if

ra + 1
2 h ≤ rc

Nr−1. (35)

Moreover, the interpolation stencils of the spherical interpolation points should fit on the Cartesian grid. Let x be an in-
terpolation point of the spherical grid. By definition, |x| ≥ rb . The corresponding three interpolation stencils should consist 
of internal Cartesian velocity points. From the in total 81 stencil points, let y be the point farthest from x (y is not always 
unique). Because of the definition of the interpolation stencils,

|y − x| ≤
(
( 3

2 h)2 + ( 3
2 h)2 + ( 3

2 h)2
)1/2

. (36)

The interpolation stencil for the pressure fits if |y| ≥ ra , but the interpolation stencils of the velocity are more critical. For 
a velocity interpolation stencil, we consider the two pressure points at distance 1

2 h from the staggered y, we choose the 
pressure point with the largest distance to x, and call it z. The latter distance satisfies

|z − x| ≤ ((2h)2 + ( 3
2 h)2 + ( 3

2 h)2)1/2 = ( 17
2 )1/2h. (37)

Since the point y is internal if the pressure point z is internal, the velocity interpolation stencils fit on the internal points 
of the Cartesian grid if |z| ≥ ra , which is ensured if

rb − ( 17
2 )1/2h ≥ ra. (38)

The argumentation also applies to multiple particles, provided the distance of each spherical interpolation point to the 
nearest particle is not smaller than rb . This means that all interpolations can be performed if the distance between two 
particle centers is at least rb + rc

Nr+1 and the inequalities (34), (35) and (38) are satisfied. Mutual overlapping spherical grids 
are avoided as long as the minimum interparticle distance, dmin , satisfies

dmin ≥ rb + rc
Nr+1. (39)

In addition, as long as the minimum distance between a particle and a wall, dmin,wall , satisfies
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dmin,wall ≥ rc
Nr+1 + h, (40)

the presence of a wall does not hinder the interpolations.
It is instructive to simplify the set of conditions (34), (35), (38) and expressions (39) and (40) for cases with uniform 

grid size �r:

ra ≥ r0 + �r + h, (41)

rb ≥ ra + 1
2 h + 3

2 �r, (42)

rb ≥ ra + ( 17
2 )1/2h ≈ ra + 2.92h, (43)

dmin ≥ 2rb + 1
2 �r, (44)

dmin,wall ≥ rb + 1
2 �r + h. (45)

In case �r = h, the minimum suitable value for rb to guarantee the existence of the interpolation stencils for any configu-
ration with a minimum interparticle distance of 2rb + 1

2 �r is rb = r0 + 5h. Then ra should be chosen between r0 + 2h and 
r0 + 2.08h. Then dmin should be at least 2r0 + 10.5h, which implies that the width of the gap between two particles should 
remain at least 10.5h. The minimum width of the gap between a particle and a flat wall should remain at least 6.5h if 
�r = h. In theory, arbitrarily small nonzero gap widths are allowed in the limit h → 0 and �t → 0. In practice, a very large 
number of grid points will be required for a simulation that allows very small gap widths.

3.5. Details of the initialization

The initialization procedure consists of 7 substeps:

1. Define the spatial domains. Store the coordinates, the grid spacings, the elements of matrix A, and some metric quan-
tities for cell-center and the staggered locations. Store also the matrix coefficients of the left-hand side of the pressure 
Poisson equation.

2. Initialize time t and evaluation time teval , particle positions, and particle and fluid velocities and pressure.
3. Compute the velocity field on the particle surfaces.
4. Set up the interpolation lists.
5. Set the velocity and pressure at all dummy and interpolation points.
6. Make the initial velocity field divergence free (optional).
7. Call the evaluation routine if t = teval .

In substep 1, the initial reference position vectors and the sizes of the Cartesian and spherical domains are defined. Then 
the coordinates of all cell center and staggered points are defined. Each cell centered grid spacing is a distance between 
two staggered points, while each staggered grid spacing is the distance between two cell centers. It is important to mention 
that the elements of matrix A and metric quantities are directly computed by inserting r, θ and φ, for the cell center and 
for the staggered locations, such that none of these quantities is obtained by interpolation.

The setup of the interpolation lists (substep 5) consists of several routines. First the block lists of particles (defined in 
subsection 3.2) are determined. Second, the block lists are used to find the distance to the nearest particle center. This 
distance and the corresponding particle number are stored for each Cartesian pressure point (cell center location). Third, 
the types of the grid points are set as described in subsection 3.3. Fourth, the acceptor and donor interpolations lists are 
set-up, and the interpolation weights are computed.

In substep 5 of the initialization routine, the interpolations are performed for the first time. This means that two interpo-
lation procedures are called, one for the velocity, the other one for the pressure. Both the velocity and pressure interpolation 
procedure consist of three main actions: (1) call the boundary condition routine of the flow variable under consideration (set 
the values at dummy points), (2) perform the interpolations (set the variable at interpolation points), (3) call the boundary 
condition routine again.

In the boundary condition routines, the following actions are performed. The variables at the Cartesian dummy points are 
copied from the corresponding points in adjacent cell block or, in the case of periodic boundary conditions, from a block that 
becomes adjacent after a periodic shift. If the boundary is a wall, the normal velocity is prescribed at the wall location, while 
the tangential velocity components are extrapolated using the third-order extrapolation formula specified in an appendix of 
[26]. For each spherical grid, ur is set to zero at the particle surface. The tangential velocity components, uθ and uφ , are set 
at the dummy points inside the particle, using the third-order extrapolation formula just mentioned. This extrapolation is 
based on the tangential velocity of the wall and the velocity at two internal grid points. The pressure at the dummy points is 
copied from the first layer of internal points (q(rc

0) = q(rc
1)). It is stressed that the pressure at the dummy points is only used 

by the procedure that solves the pressure Poisson equation. It does not mean at all that a homogeneous Neumann boundary 
condition of the pressure is prescribed to the continuous pressure Poisson equation, since the discrete pressure equation at 
rc

1 should not be regarded as a discretization of the continuous pressure Poisson equation [26]. The values of the variables 
in the dummy points in the φ direction are obtained using the periodicity in that direction. For the poles (θ = 0 and θ = π ), 
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the fourth-order interpolation formula specified in the appendix of [23] is used to calculate uθ at the poles. It was shown 
in [23] that this pole treatment is adequate. In fact, this is the only pole treatment that is required for the discretization 
of the spherical Navier–Stokes equations, since many metrical quantities are zero if θ = 0 or θ = π . However, for the 
interpolation routines it is necessary to use meaningful extensions for the dummy grid cells in the θ direction (thus for 
θ < 0 and for θ > π ). Near θ = 0, we define for θ < 0: ur(r, θ, φ, t) = ur(r, −θ, φ +π, t), uθ (r, θ, φ, t) = −uθ (r, −θ, φ +π, t), 
uφ(r, θ, φ, t) = −uφ(r, −θ, φ + π, t) and q(r, θ, φ, t) = q(r, −θ, φ + π, t). Analogous extensions are applied near θ = π .

Substep 6, a correction of the initial velocity field, is optional and not applied by default (it has only been used in the 
simulations presented in subsections 4.1–4.3). To make the velocity field divergence free (down to the truncation error), 
∇2ψ = ∇ · u is solved iteratively, and ∇ψ is subtracted from u. Although ψ does not represent the variable q at t = 0, the 
procedure that solves the Poisson equations for ψ is the same as the procedure that solves the Poisson equations for q.

In the last substep of the initialization procedure the evaluation routine is called if t is equal to teval , the evaluation time. 
This is a post processing routine, intermediate results are computed and written to file, for example forces and torques on 
particles, errors and some spatial integrals. In addition, teval is set to the next evaluation time.

3.6. Details of the time step

The main parts of the time step and temporal and spatial discretization have been presented in section 3.1. In this 
section, a complete list of all actions performed during a time step is given, and additional explanation is provided. Each 
time step consists of 16 substeps:

1. Increase t with the time step �t .
2. Store a copy of the particle velocities in vp

old .
3. Compute the hydrodynamic forces and torques on the particles, Fp and Tp .
4. Update the particle positions by incrementing the particle position vector xp by �t vp .
5. Increase vp by �t (Fp + ρp V pg + ρV pa)/(ρp V p) and increase ωp by �t Tp/I p .
6. Subtract A(vp − vp

old) from ũ in each spherical domain. This accounts for the term −Avp
,t in (8) to (10).

7. Compute the velocity on the particle surfaces.
8. Set up the interpolation lists.
9. Set the velocity at dummy and interpolation points.

10. Compute the (second) intermediate fluid velocity (update the momentum equation without the pressure gradient term).
11. Set the velocity in dummy and interpolation points.
12. Compute the divergence of the intermediate fluid velocity.
13. Solve the pressure Poisson equation iteratively (set the pressure at dummy and interpolation points in each iteration).
14. Add the pressure gradient term to the fluid velocity.
15. Set the velocity in dummy and interpolation points.
16. Call the evaluation routine if t = teval .

In substep 3, the hydrodynamic forces and torques exerted on the particles are computed. The integrals over the particle 
surface in definitions (22) and (23) are performed using the midpoint rule. The tangential velocity derivatives at the wall 
are computed by central differences using the dummy points inside the particle and the first layer of internal points near 
the particle surface. The pressure at the particle surface is obtained by second-order accurate extrapolation using the first 
two layers of internal points near the particle surface,

q(r0) = q(rc
1) + (q(rc

1) − q(rc
2))

rc
1 − r0

rc
2 − rc

1
. (46)

The pressure values in the dummy cells inside the particle are not used in this step. In substep 4, the particle locations are 
updated. For each periodic direction i, the domain length Li is added or subtracted from xp

i if that is required to keep xp
i

inside the domain 
c . In substep 5, the hydrodynamic forces and torques computed in substep 3 are used to further update 
the velocities and the angular velocities of the particles. Substeps 3 to 5 are only performed for freely moving particles. 
In the results section, we present several simulations of spheres with a prescribed motion. In those cases, substeps 3 to 5 
are replaced by statements that compute xp , vp and ωp by substitution of time t + �t in the functions that prescribe the 
motion of the particles.

In substep 6, the fluid velocity at the internal points of each spherical domain is modified to account for the change 
of the particle velocity. In substep 7, the surface velocity of each particle is modified to account for the change of the 
angular velocity of the particle. In substep 8, the new interpolation structure is set up, based on the new positions of the 
particles. Substep 8 includes an update of the types of all grid points. This update leads to so-called exposed points [17], 
internal points that were not internal before the types were updated. If vmax�t is sufficiently small (vmax is the maximum 
of the magnitude of the particle velocity), each exposed point was an interpolation point in the previous time step, which 
implies that the variable at the exposed point has a meaningful value. Since for the present overset grid method only 
Cartesian points can be exposed, the condition vmax�t < h/

√
3 should be satisfied. This is a mild restriction, such that no 
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special treatment of exposed points is needed, provided the spatial discretization is based on one previous time level (n). In 
substep 9, the first intermediate spherical and Cartesian velocities are completed by computing their values at interpolation 
and dummy points, using the new interpolation structure and the results of substeps 6 and 7.

The method reduces to the standard explicit Euler method for the intermediate velocity update if all particles are fixed. 
In the method restricted to fixed particles [23], the explicit part of the convective terms was based on two time levels (n
and n − 1) and second-order in time. This has some advantages, higher accuracy of the convective motion and less severe 
convective restriction on the time step if the viscosity is low, but it also requires that the velocity at interpolation points is 
available at time levels n and n − 1. However, if particles are moving, an interpolation point at time level n may have been 
a passive point at time level n − 1. Thus for the convective term at exposed points the time level n − 1 should not be used. 
To avoid a special treatment of exposed points, the temporal discretization of the convective terms has been simplified such 
that time level n − 1 is not used at all anymore.

The time step �t remains fixed during a simulation. For the simulations in the present paper, the viscous stability 
criterion is much more restrictive than the common convective criterion that the Courant number should be less than one. 
The theoretical upperbound for numerical stability of the explicit viscous terms is given by

�tvisc = 1
2ν/min

(
(�rc

1)
−2 + (r0�θ)−2,3h−2

)
. (47)

Each �t used in this paper satisfies �t < 0.6�tvisc . This implies that the temporal truncation error, which is proportional to 
�t , is second order in terms of the spatial grid spacing, like the truncation errors in the spatial derivatives. Another factor 
relevant for numerical stability is the density ratio ρp/ρ , which is at least one in all cases presented in this paper. However, 
it was found that the present method is unstable for ρp/ρ < 1

2 , while for ρp/ρ ↓ 1
2 , the time step needs to be reduced for 

stability. The instability for ρp/ρ < 1
2 is related to added mass effects in combination with the explicit advancement of the 

particle translational velocities, see for example [27].
In substep 13, the pressure Poisson equation problem is iteratively solved, as explained in subsection 3.1. The stop-

ping criterion of the iterative method is that the maximum norm of the residual vector is less than a specified tolerance, 
10−5min(u2

ref /dp, νuref /d2
p), where uref is a reference value for the fluid velocity relative to the particles. This tolerance 

can be regarded as an estimate of the absolute error in the pressure caused by the finite number of iterations. The pressure 
interpolation routine, executed in each iteration, includes the assignment q(rc

0) = q(rc
1). As discussed in the previous subsec-

tion, this does not reflect a physical pressure boundary condition, but is just a convenient choice for the discrete system, a 
choice that implies that the boundary condition that should be imposed on the intermediate velocity is u∗∗

r = 0 at r0. The 
latter is done in substep 11, before the divergence is taken in substep 12.

Even if the linear system were solved down to machine precision, the discrete divergence of the fluid velocity would not 
be zero down to machine precision. The first cause is the augmented matrix technique, which introduces a small error at 
each internal point. The second cause is the interpolation in substep 15, which leads to a nonzero velocity divergence at 
internal pressure points with at least one neighbouring velocity interpolation point. Both errors are truncation errors, and 
are therefore expected to converge to zero if the grid size is refined to zero. The second cause can be avoided if, instead of 
the pressure at pressure interpolation points, the pressure gradient is interpolated at velocity interpolation points in each 
iteration of the pressure Poisson equation [20]. Therefore, interpolation of the pressure gradient in combination with the 
BiCGstab iterative method was also implemented by the author of the present paper, but without success. The computational 
time per iteration was significantly increased and the iterative procedure failed to converge.

For completeness, it is mentioned that if two particles become too close, the program does not terminate, but modifies 
the velocities of the two particles according to an artificial hard-sphere repulsion (in between substeps 2 and 3). The 
repulsion occurs if the particles approach each other and the distance between the centers becomes smaller than dmin +
vmax�t . If a repulsion occurs, the user is warned. However, no repulsions occurred in the simulations presented in this paper. 
In particle resolved simulations performed with other methods, collisions have been modelled by soft-sphere collisions (or 
soft-sphere short-range repulsions), sometimes in conjunction with a lubrication model, see for example [2,5,9].

4. Results of Stokes simulations

In this section, we show that canonical analytical solutions of the (unsteady) Stokes equations for flows around a single 
sphere have been reproduced by the code. Results of four test cases are presented in four subsections. In each case dp = 1, 
ν = 1 and ρ = 1, while the acceleration terms a and g are zero unless mentioned otherwise. The Cartesian domain 
c is 
cubical (L1 = L2 = L3 = L) and the Cartesian grid cells are cubes of uniform edge length h, which implies N1 = N2 = N3. 
Each simulation was run in parallel on eight processors, using MPI, for which the Cartesian domain was divided into 2 ×2 ×2
blocks. The computing times can be found in Appendix C.

In the simulations presented in this section, the convective terms in the code were multiplied by zero in the equations 
on the spherical grid, while they were replaced by the term vp(t) ·∇u in the equations on the Cartesian grid, where ∇u was 
discretized by the standard second-order central difference scheme. The analytical Stokes solutions used are solutions of the 
unsteady Stokes equations in the frame of reference of the sphere. Since the unsteady Stokes equations are not Galilean 
invariant, the convective term vp(t) · ∇u appears in the unsteady Stokes equations after transformation to the Cartesian 
frame of reference.



282 A.W. Vreman / Journal of Computational Physics 333 (2017) 269–296
Table 2
Definition of configurations X1, X2, X2a and X2b used in subsections 4.1–4.3, where X 
stands for Tran, Osc or Rot. The grid in radial direction is uniform with �r = h. In each 
case ra = r0 + 0.4(rb − r0) + 10−8.

V or ω0 dp/h Nr × Nθ × Nφ N3
1 (rb − r0)/dp �t

X1 e1 15 5 × 24 × 48 603 1/3 0.0004
X2 e1 30 10 × 48 × 96 1203 1/3 0.0001
X2a e1 30 5 × 48 × 96 1203 1/6 0.0001
X2b e3 30 10 × 48 × 96 1203 1/3 0.0001

4.1. Translating sphere

In this and the following two subsections, where we consider the Stokes flows due to a translating, oscillating and ro-
tating sphere, the size of 
c is given by L1 = 4. The center of 
c is denoted by xcen . At t = 0, the fluid velocity is set 
equal to the exact velocity. Each time the boundary condition routine is called, the exact fluid velocity vector at actual time 
t is copied to the dummy points on and near the outer faces of 
c . This is combined with zeroth order extrapolation of 
the pressure, which, as explained in section 3.4, is consistent since the exact velocity is also imposed on the intermediate 
velocity on the faces of 
c , just before the divergence operator is applied. The resolutions used are summarized in Table 2. 
Each grid is uniform in the radial direction and �r = h. Moreover, ra = r0 + 0.4(rb − r0) + 10−8 (the grid structure is illus-
trated in Fig. 4(a)). In order to allow a meaningful comparison with the exact pressure, the simulated pressure is modified 
by subtracting the simulated pressure averaged over the particle surface. The subscript “exact” refers to the corresponding 
analytical solution.

In the first test case, we consider Stokes flow around a sphere translating with constant velocity V. The translation is 
given by:

xp(t) = xcen + Vt, vp(t) = V, ωp = 0. (48)

The exact solution can be written as [28] (p. 265):

u(x, t) = r0

4r

[
3 +

( r0

r

)2]
V + 3r0

4r3

[
1 −

( r0

r

)2]
(V · r)r, (49)

q(x, t) = 3νr0

2r3
(V · r), (50)

Fp = −6πρνr0V, Tp = 0, (51)

where r = x − xp(t) and r = |r|. In the numerical tests, we use V = e1 or V = e3 (uref = |V| = 1). These two choices are 
numerically not equivalent, because the polar axis in spherical coordinates is always aligned with e3, by definition.

The translating sphere simulations performed on the grids specified in Table 2 are indicated by Tran1, Tran2, Tran2a and 
Tran2b. The number in each name refers to the level of refinement. The deviations from the analytical solutions are shown 
in Fig. 5, as functions of time: the relative error in the particle force and the maximum norms of the velocity divergence, 
the error in the velocity and the error in the pressure. The discrete maximum norm is defined as the maximum of the 
absolute value of a quantity over the centers of all internal cells in the spherical domain and the centers of all internal cells 
in the Cartesian domain (thus the overlap region is used twice). This is straightforward if the quantity is the pressure or 
velocity divergence, since these are defined at the centers of the cells. For a velocity difference, we first square the velocity 
differences of each component at their staggered locations, then interpolate these squares to the centers of the cell using 
the weights 1/2 and 1/2, then we sum the three squares, and then the root of this sum is inserted as argument into 
the discrete maximum norm. The maximum norm of the error in the velocity is normalized by V = |V| = 1. The force is 
normalized by Fexact = 3πρνdp V = 3π . The maximum norm of the error in the pressure is normalized by the maximum of 
the analytical pressure field, qmax = 3νV /dp = 3.

All errors are around 1% or less for the coarsest grid and they decrease upon grid refinement (Fig. 5). Comparison 
between Tran2 and Tran2a shows that it matters if ra and rb are kept constant during grid refinement (Tran2) or if the radial 
extent of the grid shrinks during grid refinement (Tran2a). All errors are reduced in both cases, but the reduction is largest 
if ra and rb are kept constant. Thus fixed overlap during grid refinement reduces the error more than shrinking overlap. This 
was also found by others [17,20]. For fixed overlap, the particle force and the velocity field display second-order accuracy, 
but the pressure and the velocity divergence only first-order accuracy. The errors in case Tran2b, in which the velocity of 
the sphere is directed along the polar line, are comparable to those in Tran2, except the error of the force, which is much 
smaller in Tran2b than in Tran2.

It is surprising that the accuracy of the pressure in an overset grid method based on second-order finite differences and 
third-order interpolations reduces to first-order (at some times at some locations). It is mentioned that the requirement of 
vanishing maximum norms of truncation errors in simulations of flows around moving objects can be regarded as severe 
tests, because pointwise convergence of the numerical solution to nontrivial exact solutions is verified. The first-order accu-
racy of the pressure can probably not be attributed to unsteady behaviour, since it also occurs for uniform Stokes flow past 
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Fig. 5. Translating sphere. Simulations Tran1 (red dashed), Tran2 (blue solid), Tran2a (black dashed) and Tran2b (circles): (a) Relative error in the particle 
force, (b) maximum norm of the velocity divergence, (c) maximum norm of the error in the velocity, and (d) maximum error of the error in the pressure. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

a fixed sphere, which is a steady state flow (see Appendix D, where also a reduced order of accuracy is observed for the 
pressure, in the maximum norm and to smaller extent also in the L2 norm).

The reduction of the order of accuracy of the divergence and the pressure can be caused by the abrupt change of the 
structure of the discretization error in the overlapping region. Consider an internal velocity point adjacent to an interpolation 
point. The leading terms of the truncation errors in both points are both second order (since the velocity is shown to be 
second-order accurate), but their prefactors may be discontinuous and then the accuracy of the derivative based on these 
two points can reduce to first order. The same argument shows that the accuracy of a second-order velocity derivative based 
on three points with one of them being an interpolation point can locally reduce to zeroth order. Because of the projection 
of the second intermediate velocity, part of the viscous term induces part of the pressure gradient. Thus if the viscous term 
is zeroth order at some points, the pressure gradient required to make the velocity divergence free can be a zeroth order 
quantity at some points. If this is the case, the pressure itself can be first-order accurate at some points.

To validate a three-dimensional particle-resolved simulation method, analytical solutions of flows around an isolated 
sphere have been used before, but apparently only for steady flow around a fixed non-rotating and a fixed rotating sphere. 
For example, Tang et al. [29] and Baltussen [30] used the Stokes expressions for the force and torque on an isolated fixed 
sphere to test their immersed boundary methods. Kempe et al. [31] used the exact solutions for both no-slip and free-slip 
surface conditions to test an immersed boundary method for steady flow past a fixed sphere. For the free slip case, the 
maximum norm of the error in the velocity was shown, which remained (slightly) above 1% in all tests. According to 
Ref. [23], the maximum norm of the velocity error dropped below 0.2% in overset grid simulations of steady flow past a 
fixed sphere with a no-slip surface. Moreover, Hasimoto’s analytical expressions for the drag force exerted on spheres in 
ordered particle arrays have been used in verification of numerical methods, see for example [8,3,5,29]. Not for the purpose 
of validation, but to investigate the effect of Reynolds number ranging from 0.1 to 100, Mei [32,33] has simulated unsteady 
flow past a fixed sphere, using an axisymmetric flow solver.

It is remarked that in Ref. [23] the Cartesian and spherical domains were much larger than in this section since the 
spherical grid was stretched. The present test is more challenging, not only because the sphere moves but also because 
the interpolations are performed much closer to the surface of the sphere. Near the surface the variation of the pressure is 
relatively strong (the pressure decays with the square of the distance to the center).

4.2. Oscillating sphere

The second test case is an oscillating sphere. The oscillation is given by

xp(t) = xcen − �
(e−iωt

V
)
, vp(t) = �

(
ie−iωtV

)
, ωp = 0, (52)
ω
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Fig. 6. Oscillating sphere. Simulations Osc1 (red dashed), Osc2 (blue solid) and the analytical solution (black dash-dotted): (a) force exerted on the oscillating 
sphere, while the prescribed particle velocity oscillation is shown after multiplication by ten (circles); (b) the pressure at a stagnation point on the surface 
of the sphere (θ = π/2 and φ = 0). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)

where i2 = −1 (only in this subsection i represents the imaginary unit), the function �(.) takes the real part of its argument, 
while the constants V and ω denote the velocity amplitude and the oscillation frequency, respectively. The exact solution, 
presented in terms of Stokeslets in [28] (p. 310), can be rewritten as

u(x, t) = �
( ie−iωt B

8πν

[(
2eR(1 + 1

R
+ 1

R2
) − 2

R2

)
V +

( 6

R2
− 2eR(1 + 3

R
+ 3

R2
)
)V · r

r3
r
])

+

�
( ie−iωt Q

4π

[
− eR(1 + R + R2)V + 3eR(1 + R + R2

3
)

V · r

r5
r
])

, (53)

q(x, t) = �
( ie−iωt B

4πr3
(V · r)

)
, (54)

Fp = −6πνr0ρ �
(

ie−iωt(1 + λ + λ2/9)V
)
, Tp = 0, (55)

where r = x − xp(t) and r = |r|, while

B = 6πνr0(1 + λ + λ2/3), Q = −6πr3
0(eλ − 1), R = λr

r0
, (56)

λ = (1 − i)r0

( |ω|
2ν

)1/2
. (57)

In the numerical tests, (52) is prescribed, using ω = 2π , and V = e1 or V = e3.
The oscillating sphere simulations performed on the grids specified in Table 2 are indicated by Osc1, Osc2, Osc2a and 

Osc2b. The force exerted on the sphere and the pressure at stagnation point (θ, φ) = (π/2, 0) on the particle surface are 
shown in Fig. 6 for Osc1 (coarse grid) and Osc2 (fine grid), together with the analytical solutions. The amplitude of the 
force, Fmax ≈ 20.4, is more than two times higher than 3π , the magnitude of the force exerted on the sphere translating 
with velocity V = 1. This indicates that the oscillating flow is essentially different from the translating case and that it can 
certainly not be considered as a quasi-steady flow in the frame of reference of the sphere. In Fig. 6(a) the curves for the force 
are on top of each other, while in Fig. 6(b) slight underprediction of the pressure amplitude by the coarse grid simulation 
can be observed. The amplitude of the pressure at this location equals qmax, the maximum of the absolute pressure over 
space and time (qmax ≈ 7.1).

Results for the relative error of the force and the maximum norms of the velocity divergence and the errors in the 
velocity vector and pressure are shown in Fig. 7, for simulations Osc1, Osc2, Osc2a and Osc2b. Comparing Osc2 to Osc2a, 
we again notice that the error reduction by grid refinement is larger for grid 2 (fixed overlap) than for grid 2a (shrinking 
overlap).

In cases Osc2 and Osc2b, the same grid is used, but the direction of the velocity vector is different. The results of these 
two cases are equally good. The figures indicate pointwise convergence of the numerical solution to the analytical solution 
upon grid refinement. To check the approximate order of convergence it may be more appropriate to look to the temporal 
maximum or average of the spatial norm than to individual times. For the velocity, we see that the maximum over time 
reduces by a factor 4 upon grid refinement, indicating that the velocity is second-order accurate. Whereas for the translating 
sphere, second-order accurate convergence of the particle force was observed, the error reduction of the force upon grid 
refinement is reduced by factor of approximately 2.8, which suggests that the order of convergence is 1.5 in this case. The 
pressure and velocity divergence display roughly first-order convergence in the maximum norm (see the discussion on the 
order of accuracy in the previous subsection). It is not known whether other methods would provide better than first-order 
pointwise convergence of the pressure if they were applied to this problem. Despite the first-order spatial accuracy of the 
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Fig. 7. Oscillating sphere. Simulations Osc1 (red dashed), Osc2 (blue solid), Osc2a (black dashed) and Osc2b (circles): (a) Relative error in the particle force, 
(b) maximum norm of the velocity divergence, (c) maximum norm of the error in the velocity, and (d) maximum error of the error in the pressure. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Results for the rotating sphere at t = 0.3. The maximum norms of the velocity difference, 
pressure difference and velocity divergence are normalized by |ω0|dp , |ω0|dpν and |ω0|, re-
spectively.

Case dp/h |Tp − Tp
exact |/|Tp

exact | ‖u − uexact‖∞ ‖q − qexact‖∞ ‖∇ · u‖∞
Rot1 15 0.00026 0.00150 0.0189 0.0059
Rot2 30 0.00032 0.00041 0.0065 0.0024
Rot1a 30 0.00047 0.00048 0.0103 0.0037
Rot2a 30 0.00030 0.00017 0.0048 0.0024

pressure, all errors, including those in the pressure, are less than 1% of the reference values in all internal grid cells for all 
times for 30 grid points per particle diameter. In conclusion, this test case is a further confirmation of adequate performance 
of the present overset grid method.

4.3. Rotating sphere

The third test case is a rotating sphere. The rotation, which is the only movement of the sphere, is given by

xp(t) = xcen, vp(t) = 0, ωp = ω0. (58)

The exact solution can be written as [28] (p. 268):

u(x, t) = (ω0 × r)
( r0

r

)3
, q(x, t) = 0, Fp = 0, (59)

Tp = −8πρνr3
0ω0, (60)

where r = x − xp(t) and r = |r|. Since the translational velocity of the sphere is zero, this is a solution of the (steady) Stokes 
equations in both the Cartesian and spherical frames of reference. Baltussen [30] used this flow to test a second-order 
immersed boundary method and concluded that dp/h > 80 was required to predict the torque within 1% accuracy.

Table 3 shows the steady state results of the overset grid method simulations, which were performed on the spatial 
grids specified in Table 2 (uref = π |ω0|dp = π ) for 0 ≤ t ≤ 0.3. The discrepancies with the analytical solution are small. The 
torque errors are very small, less than 0.05% in all cases. In fact, the coarse grid leads to the smallest torque error. This is 
probably due to a fortunate cancellation of errors for this quantity since the maximum norms do show that the simulation 
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on the coarse grid (Rot1) is the least accurate one. The reduction of the maximum norms in case Rot2 compared to those 
in case Rot2a (grid refinement with fixed overlap) clearly indicates pointwise convergence of the numerical to the analytical 
solution. Overall, the smallest errors are obtained if the torque directed into the x3 direction (Rot2b), which is not surprising 
since in this case there is only one component of the spherical velocity nonzero and that one is constant (uφ ).

4.4. Instantaneously accelerated sphere

In the fourth test case, a step change is applied to the velocity of a sphere. Initially the fluid and the sphere are both at 
rest. At t = 0, the sphere is given an instantaneous impulse ρp V p v0e1 and afterwards the system evolves freely. There is no 
gravity.

An exact closed system for the velocity vp = v(t)e1 of the sphere is given by

ρp V p
dv(t)

dt
= F (t), v(t) = 0 if t < 0, (61)

F (t) = −6πρνr0 v(t) − 6ρr2
0

√
πν

t∫

−∞

(dv

dt

)
t=s

1√
t − s

ds − 1
2ρV p

dv(t)

dt
+ ρp V p v0δ(t). (62)

The first three terms on the right-hand side of (62) are the Stokes drag force, the Boussinesq-Basset viscous memory 
force and the reaction acceleration force (added mass force), respectively. These well-known terms can be derived from 
the Laplace transform of the unsteady Stokes equations, see [28]. The fourth term, proportional to the Dirac delta function 
δ(t), represents the momentum pulse injected into the system at t = 0. This system is a special case of the so-called 
Basset–Boussinesq–Oseen equation.

It is convenient to define

v̂0 = v0ρp/(ρp + 1
2ρ), (63)

v(t) = v̂0 H(t) + v ′(t), (64)

F (t) = ρp V p v̂0δ(t) + F ′(t), (65)

where H(t) is the Heaviside function. We derive the following system for v ′(t):

ρp V p
dv ′(t)

dt
= F ′(t), v ′(t) = 0 if t ≤ 0, (66)

F ′(t) = −6πρνr0(v̂0 + v ′(t)) − 6ρr2
0

√
πν

( v̂0√
t

+
t∫

−∞

(dv ′

dt

)
t=s

1√
t − s

ds
)

− 1
2ρV p

dv ′(t)
dt

. (67)

The function v ′(t) is continuous at t = 0, such that v ′(t) and F ′(t) for t > 0 can be accurately computed by applying a 
standard numerical method to the latter system. The implied solutions v(t) and F (t), which follow from (64) and (65), are 
called vexact and Fexact .

Since the velocity of the sphere undergoes a step change, the overset grid simulations of this problem are denoted by 
Step1 and Step2. A velocity step change of a sphere is an interesting and also relevant phenomenon, because in reality 
collisions create sudden changes of particle velocities, relatively large changes if ρp/ρ is large, like in a gas–solid flow. For 
this reason ρp/ρ = 1000 is selected in Step1 and Step2. The investigation of a step change is also relevant from a more 
theoretical point of view; if a particle of finite size is injected in a nontrivial smooth flow at location x, discontinuities 
are generated at the particle surface, even if the particle is injected with translational and angular velocity of the particle 
respectively equal to the velocity and half vorticity of the fluid at x just before injection.

The impulsive acceleration is applied through the initial condition: at t = 0 the fluid velocity and pressure field are zero, 
but the velocity of the sphere is set to v0e1 (v0 = uref = 1, ωp = 0). It is essential that the option to make the velocity 
divergence free after the initialization is not used in this case. The velocity of the sphere is not prescribed for t > 0. Since 
for this case no analytical expression for the full velocity field was found in literature, the domain 
c is large (L1 = 20) 
and equipped with periodic boundary conditions. The sphere is initially positioned at the center of 
c . The extent of the 
spherical domain size is determined by rb ≈ 3.562dp , while ra = (r0 + rb)/2. The spatial resolution of two simulations is 
given by 15κ × 24κ × 48κ and N3

1 = (40κ)3, where κ = 1 (Step1) or κ = 2 (Step2). The grid configuration for κ = 1 is 
illustrated in Fig. 4(b). The minimum radial grid spacing is approximately dp/(15κ). The radial grid is stretched using the 
exponential stretching function defined in section 3. The time step equals �t = 0.0004/κ2.

Fig. 8 shows the velocity change and the force on the particle due to the impulse input at t = 0 as functions of time. 
The axis scalings are logarithmic to capture the large variation of quantities and to show the large changes in the first time 
steps clearly. Equation (62) contains three terms that are singular at t = 0. The impulse injected into the system at t = 0, 
ρp V pδ(t), is accounted for by the initial condition of the simulations. The other two singular terms are the history force and 
the added mass force, which are both negative at t = 0. These negative singularities lead to the very large −F in the first 
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Fig. 8. Instantaneously accelerated sphere. (a) The change of the velocity v0 − v(t) and (b) minus F (t) from simulations Step1 (circles, red dashed) and 
Step2 (squares, blue solid). In (a) and (b), the so-called exact solution obtained by numerical integration of the Basset–Boussinesq–Oseen equation is also 
included (dash-dotted). In (c) and (d) the relative error of the deviation from the so-called exact solution is shown for the v0 − v(t) (c) and F (t) (d). The 
symbols denote the values after time step 1, 2, 3, 4, 8, 16, 100, 1000 and 10000. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

time step of the simulations, roughly proportional to 1/�t . The largest contribution of −F in the first time step is due to 
the added mass singularity since the delta function singularity in the added mass force is stronger than the root singularity 
in the history force. In both cases, the simulations takes two time steps to adapt v0 to approximately v̂0, which indicates 
that in the numerical solutions v(2�t) converges to v̂0 if �t → 0. This reflects the theoretical limit v(t) → v̂0 if t ↓ 0. In 
the fine grid simulation (Step2), the relative error drops below 1% within 8 time steps for v0 − v(t) and within 16 time 
steps (t = 0.0016) for F (t). In a test for density ratio ρp/ρ = 1, a larger error was found (less than 4% in F (t) for t ≥ 0.0016, 
for the same grid and same time step as in Step 2), but in that test the error could be lowered by a factor 2 by reducing 
the time step. It is concluded that the response to a step change of the particle velocity can be captured by the present 
method.

5. Results of Navier–Stokes simulations

In this section, we present results of simulations of three Navier–Stokes flow cases: (1) a moving array of spheres, (2) a 
sphere falling in channel flow, and (3) eight small spheres freely moving in a Taylor–Green flow. In the last two cases, the 
stretching option of the spherical grid is used to reduce the number of grid points of the Cartesian background grid with 
orders of magnitude (compared to uniform Cartesian grid methods). In each case dp = 1, ν = 1 and ρ = 1. The acceleration 
terms a and g are zero, except in the second case. The Cartesian grid cells are cubes of uniform edge length h. Each 
simulation was run in parallel on eight processors, using MPI, for which the Cartesian domain was divided into 2 × 2 × 2
blocks. The computing times can be found in Appendix C.

Although in the multi-particle cases, cases (1) and (3), the particles do not collide, these cases do add value to the 
present validation study. The results of the first case demonstrate that the Galilean invariance of the Navier–Stokes equations 
is numerically respected, which is a non-trivial validation of the implementation of the convective terms in the overset grid 
approach. The third case is a transient flow with a number of symmetries in the initial condition. The motion of multiple 
particles, initially symmetrically embedded in the flow, appears to obey the initial symmetry up to high accuracy during 
the entire simulation. The verification that these expected symmetries are persistent in the simulation confirms that the 
implementation of geometrically complicated parts of the algorithm, such as the time-dependent motion of interpolation 
points and interpolation stencils is correct. Furthermore, the present code is the first MPI implementation of a staggered 
overset grid method that can be used for particle-resolved direct numerical simulations of turbulent flows around fixed 
or oscillating particles, which is a valid reason to demonstrate that the method is able to simulate flows with multiple 
non-colliding particles. Of course such flows are theoretical, but they do give insight into particle–fluid interaction [37,23].
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Table 4
Results of simulations of an FCC array of particles moving with velocity V 1. The particle volume fraction equals 
0.2 and the Reynolds number is 40.

V 1 κ dp/h F p,q
1 /F0 F p,ν

1 /F0 ρa1 V p/F0 F p,tot
1 F p

1 /F p,tot
1

0 1 19.2 2.703 4.645 1.907 9.255 0.794
0 2 38.4 2.800 4.671 1.880 9.351 0.799
0 4 76.8 2.820 4.673 1.875 9.369 0.800
−U1/(1 − α) 1 19.2 2.702 4.641 1.910 9.252 0.794
−U1/(1 − α) 2 38.4 2.806 4.670 1.878 9.354 0.799
−U1/(1 − α) 4 76.8 2.827 4.673 1.871 9.371 0.800

5.1. Moving FCC array of spheres

We consider a face-centered cubic (FCC) particle array with particle volume fraction α = 0.2 at finite Reynolds number, 
like in Refs. [3,23,29,8]. Periodic boundary conditions are applied in each direction and 4 spherical particles are put at 
locations (L1, L1, L1)/4, (L1, 3L1, 3L1)/4, (3L1, L1, 3L1)/4 and (3L1, 3L1, L1)/4. The size of the cubical domain is given by 
L1 = (10π/3)1/3 ≈ 2.19. The velocities of the particles are constant and equal to V = V 1e1 and the forcing term is set to 
a = a1e1 with

a1(t) = max(−2000,min(2000, [U1 − (1 − α)(〈u1〉
 − V 1)]/�t)), (68)

where U1 = 40 is the preset superficial relative velocity. For stability reasons the explicit forcing term depends on �t . The 
difference between the preset and the computed superficial relative velocity decreases with decreasing �t . The Reynolds 
number ρdp U1/ν is equal to 40.

In the definition of a1, the operator 〈·〉
 appears. This represents a volume average over 
, the domain that excludes the 
particles. For the approximation of the volume integral over 
, we define the radius re for the evaluation of integrals, which 
should coincide with a staggered radial position (re = 0.8rb in this subsection). The integration over 
 is then the sum of: 
(1) a midpoint integration over all spherical cells within distance re of a particle location, (2) a midpoint integration over 
all Cartesian cells entire outside the spheres with radius re , and (3) a midpoint integration over tiny Cartesian subcells that 
cover the parts of 
 not covered by (1) and (2). The size of the tiny Cartesian subcells is h/5. This integration procedure 
has been described in more detail in Ref. [23].

Simulations have been performed for both fixed particles, V 1 = 0, and moving particles, V 1 = −U1/(1 − α), for three 
different resolutions and for 0 ≤ t ≤ 0.3. The number of Cartesian grid cells is N3

1 = (42κ)3, where the grid refinement 
factor κ equals 1, 2 or 4. The corresponding resolutions of the spherical grids are 5κ × 24κ × 48κ . In each case, the radial 
grid spacing �r is uniform and equal to h, while uref = U1 and �t = 0.000025. The grid structure for κ = 1 is the same as 
in Fig. 4(a), except that h is approximately 1.3 times smaller than in Fig. 4(a). The time step is given the same small value in 
each case to ensure that the difference between preset and computed superficial relative velocity is negligible in each case. 
Results of the simulations, the three contributions to the particle force, F p,q

1 , F p,ν
1 and ρa1 V p at t = 0.3, are also shown 

in Table 4 (after normalization by F0 = 3πdpνU1). The third contribution is due to the spatially constant pressure gradient 
−ρa1. Moreover, the total particle force F p,tot

1 = F p,q
1 + F p,ν

1 + ρa1 V p is included. The forces shown in the table are mean 
values, averaged over the particles and over time between t = 0.25 and t = 0.3. The corresponding standard deviations were 
verified to be small: for the fixed particles they were zero, while for the moving particles the relative standard deviations 
of F p,q

1 were 1.2% for the coarse, 0.2% for the finer and 0.03% for the finest grid (those of F p,ν
1 were an order of magnitude 

smaller).
Table 4 demonstrates clear convergence upon grid refinement for both the fixed and moving configurations. The differ-

ences between the results of the fixed and moving configurations are negligible, which confirms that the implementation 
mimics the Galilean invariance of the Navier–Stokes equations. A perfect momentum balance implies that the mean of 
(1 − α)a1 is equal to the mean of Np F p

1 . Thus the last number in the table, the mean of F p
1 divided by the mean of F tot

1 , 
should converge to 1 − α = 0.8, and it does. For fixed particles, the same test case was considered in Refs. [3] and [23]. It 
is remarked that the force contributions F p,q and F p,ν mentioned in Ref. [23] were larger because those were normalized 
by (1 − α)F0. As a check, the values from Table 4 were divided by (1 − α) and compared to those in [23]. Small discrepan-
cies (<1.5%) were observed. Their source was traced, and a small error in the treatment of interpolation points outside 
c
was found in the code used for the simulations in [23]. This error affected only the FCC test case and no other simulation 
presented in [23].

5.2. Falling sphere in channel flow

In this subsection we consider a falling sphere in a laminar channel flow. The test case was introduced by Uhlmann [2], 
while the initial condition was slightly modified by Breugem [5]. The domain 
c is given by L3 = H = 20dp and L1 = L2 =
H/2. There is a flat solid no-slip wall at x3 = 0 and a free slip wall at x3 = H . Periodic boundary conditions are used in the 
x1 and x2 directions. The initial velocity of the fluid is given by the parabolic profile u = Ub(x3/H)(2 − x3/H)e2, where Ub
is the specified bulk velocity. A single sphere of diameter dp = 1 is initially located at xp = (L1, L2, L3)/2. The translational 
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Fig. 9. Falling sphere in laminar channel flow. Streamwise particle velocity v p
2 (a), wall-normal particle velocity v p

3 (b) and lateral angular velocity ωp
1 (c), for 

three consecutively refined grids. Simulations FS1 (dp/h = 2, red dashed), FS2 (dp/h = 4, blue solid) and FS4 (dp/h = 8, black dash-dotted). For comparison 
results of two high-resolution IBM simulations performed and presented by Breugem [5] are included: IBM1 (filled squares) and IBM2 (open circles). 
Contours of streamwise (vertical) velocity from FS4 in the plane x1 = 5 at t = 1 are shown in (d). The contour increment is 10. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

and rotational initial velocities are given by vp = 1.125Ube2 and ωp
1 = −0.75(Ub/H)e1. In addition, g = −1.1036(U 2

b /dp)e2
and ρp/ρ = 4.17, while a = a2e2 is determined such that 〈u2〉
 remains constant in time. The bulk velocity Ub is set to 50, 
such that Ub H/ν is equal to 1000.

The overset-grid simulations that have been performed are called FS1, FS2 and FS4. The number in each name denotes 
the grid refinement factor κ , again equal to 1, 2 or 4. The spherical grid contains 15κ × 24κ × 48κ cells and the Cartesian 
background grid 20κ × 20κ × 40κ cells, while the time step is equal to 0.001(H/Ub)/κ

2 and uref = Ub . The Cartesian grid 
contains dp/h = 2κ grid points per particle diameter. The minimum radial grid spacing is approximately dp/(15κ). The 
grid structure is the same as in subsection 4.4 and is illustrated in Fig. 4(b). The radius re for the evaluation of integrals 
(introduced in the previous subsection) is approximately 3.125dp in this case.

The evolution of the streamwise and wall normal particle velocity and the lateral rotational particle velocity are shown 
in Fig. 9. A clear dependency on resolution is observed, in particular for the streamwise and wall normal velocity. The fact 
that the differences between FS1 and FS2 are much smaller than the differences between FS2 and FS4 suggests that the grid 
refinement sequence is convergent. The curves of the streamwise velocity from FS2 and FS4 fall one upon the other. At the 
highest resolution (κ = 4), the total number of grid cells is approximately 1.2 million and the total number of time steps 
16000.

Furthermore, Fig. 9 shows results of two immersed boundary simulations IBM1 and IBM2 performed by Breugem, both 
for dp/h = 54 (see Figs. 13–15 in [5]). IBM1 is the immersed boundary method as originally developed by Uhlmann [2] and 
has been used in impressive resolved simulations with many particles, see for example [34]. Breugem [5] showed that the 
first-order accurate IBM1 can be made second-order accurate if the fluid-solid interface is retracted. Thus, he formulated 
IBM2, in which the rectraction distance is 0.3h. Other improvements of IBM2 over IBM1 are that IBM2 uses the technique 
of multidirect forcing and, like [4], takes the fluid inertia inside the particle into account.

Fig. 9 shows a remarkably good agreement between IBM2 and the overset grid simulation FS4. The results of these two 
simulations are apparently more accurate than those of IBM1. On coarse grids (for example dp/h ≈ 16), IBM2 produced 
small but clearly discernible rapid oscillations on the curve of ω1, which were attributed to grid locking. Such oscillations 
are not observed in the results of the overset grid simulations, also not in those of FS1 (see Fig. 9(c)).

The total number of grid cells in FS4 is approximately 260 times smaller than in IBM1 and IBM2, which used a grid of 
314.9 million cells. Also timewise FS4 is more efficient; the simulation required approximately 20 times less CPU time than 
IBM2 on the same hardware (see Appendix C). It is remarked that the immersed boundary method is more suitable for 
dense flows, whereas the present overset grid method is more suitable for dilute flows (with non-colliding particles).
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Fig. 10. Trajectories of the particles injected into Taylor Green flow in the planes x3 = 8 (b) and x3 = 24 (b) for 0 ≤ t ≤ 5. The solid line with filled circles 
and the solid lines without markers denote the trajectories from the fine grid simulation TG2 (ρp/ρ = 1). A trajectory from simulation TG2a (ρp/ρ = 8) is 
also included (open circles). In addition trajectories from the coarse grid simulations TG1a (red dashed) and TG2a (black dashed) are shown. The trajectories 
start at the ends where solid and dashed lines coincide. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

5.3. Moving spheres in Taylor–Green flow

The third example of a Navier–Stokes flow is the three-dimensional Taylor–Green flow that evolves from the following 
initial condition for the fluid velocity in Cartesian coordinates:

û1 = U sin(2πx1/L1) cos(2πx2/L1) sin(2πx3/L1), (69)

û2 = −U cos(2πx1/L1) sin(2πx2/L1) sin(2πx3/L1), (70)

û3 = 0. (71)

The flow is interesting because this very simple initial condition evolves into a complicated flow in which small scales 
are created by vortex stretching, like in turbulent flows [35]. The flow is periodic in each direction. The initial condition 
contains many symmetries and, provided the Reynolds number is moderate, the symmetries are probably stable under small 
perturbations. The domain 
c is cubical with L1 = 32, while U = uref = 40 and ν = 1, such that the initial Reynolds number 
is 1280. Schneiders et al. [36] performed a resolved simulation of small particles in a three-dimensional compressible Taylor 
Green flow (at low Mach number, 0.1). They showed an illustrative snapshot of the vorticity, but no quantitatively verifiable 
result of a flow variable.

Eight small spheres of diameter dp = 1 are injected at t = 0, four in the plane x3 = 8 and four in the plane x3 = 24. The 
initial particle velocity is obtained by substituting the initial particle positions into (69) to (71). The initial angular velocities 
of the particles are set to ζ/2 at the particle positions (ζ = ∇ × û). We consider two cases: density ratio ρp/ρ = 1 (TG1 and 
TG2) and ρp/ρ = 8 (TG1a and TG2a, no gravity). Simulations have been performed using spherical grids of 30κ × 24κ × 48κ
cells overset on a Cartesian grid of (64κ)2 cells, for κ = 1 (TG1 and TG1a) and κ = 2 (TG2 and TG2a). The radial stretching 
function, ra , rb and re are the same as in the previous subsection, and again dp/h = 2κ (see the illustration in Fig. 4(b)).

The initial vorticity field in the planes x3 = 8 and x3 = 24 is given by ζ1 = ζ2 = 0 and

ζ3 = 2πU

L1
sin(2πx1/L1) sin(2πx2/L1) sin(2πx3/L1). (72)

Thus in the plane x3 = 8 there are four planar vortices, viewed from above, anti-clockwise rotating vortices centered at (8, 8)

and (24, 24) and clockwise rotating vortices at (24, 8) and (8, 24). Initially, a particle is placed in each of these vortices, 
slightly off-center, namely at the locations (9.6, 9.6), (25.6, 9.6), (9.6, 25.6) and (25.6, 25.6). Respecting the point symmetry 
around (16, 16, 16), the initial particle locations in the plane x3 = 24 are given by (22.4, 22.4), (6.4, 22.4), (22.4, 6.4), 
(6.4, 6.4).

The locations of the particles and the structure of the velocity field is clarified by the simulated particle trajectories, 
shown in Fig. 10. For example, the trajectory of the first particle in TG2 is indicated by open circles. The diameter of the 
circles indicates the particle size on scale. When time evolves each particle moves to the outer region of the corresponding 
vortex. Each pair of neighbouring circles on the same curve corresponds to a time interval of 0.5. The simulations were 
terminated at t = 5. Due to the structure of the velocity (u3 remains zero in these two planes), the x3 coordinate of the 
particles does not change in time. Comparing the fine grid to the coarse grid simulations, we observe that the trajectories 
are similar, but not the same. Apparently, the effect of discretization errors gradually increases and becomes significant at 
later times in case TG1. For clarity, only the trajectory of the first particle is shown for ρp/ρ = 8, one for TG1a and one for 
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Fig. 11. Eight particles in Taylor–Green flow with ρp/ρ = 1, simulations TG1 (dashed) and TG2 (solid). (a) Turbulence kinetic energy K (circles) and 
dissipation rate ε (squares). For the first particle (injected at (9.6, 9.6, 8)) the figure shows: (b) the velocity components v p

1 (circles) and v p
2 (squares); 

(c) the angular velocity component ωp
3 ; (d) the particle forces F p

1 (circles) and F p
2 (squares) and their viscous parts F p,ν

1 (upward point triangles) and F p,ν
2

(downward pointing triangles). (e, f) Contours of the magnitude of the velocity from TG2 at t = 0.5 in the plane x3 = 8. The contour increment equals 2 in 
(e) and 0.5 in (f), which also shows 12 velocity vectors (6 at r = 0.5 and 6 at r = 1).

TG2a. The initial particle positions are the same as for ρp/ρ = 1 and also in these cases the symmetries are preserved. For 
ρp/ρ = 1 particles remain in the vortex where they were injected. However, for ρp/ρ = 8 the particles respond to the fluid 
motion more slowly: when the particle shown exits the periodic domain at x1 = 0 and reenters at x1 = 32, it leaves the 
original vortex and moves over to a vortex rotating in opposite direction.

Further details of the simulations for ρp/ρ = 1 are shown in Fig. 11. In Fig. 11(a), the total kinetic energy K = 1
2 〈|u|2〉


and the total energy dissipation rate ε = ν〈∇u : ∇u〉
 are shown as functions of time. The kinetic energy decays, but the 
dissipation rate first increases, due to the generation of smaller scales, until it attains its maximum around t ≈ 1, and then 
it decreases. The differences between the coarse and fine grid simulations remain small until t ≈ 1.5. At later times most 
differences gradually increase and can be clearly observed. Fig. 11(c) shows that the angular velocity is surprisingly accurate, 
compared to the velocity. The particle force components of the first particle are shown in Fig. 11(d) and the corresponding 
velocity components in Fig. 11(b). While the particle velocity looks very smooth for both resolutions, its time derivative (the 
particle force) displays small rapid oscillations in the coarse grid case TG1, which is another indication that TG1 is somewhat 
underresolved at later times. Furthermore, the viscous contribution to the particle force is shown in Fig. 11(d). It appears 
to be much smaller than the total force, which implies that the particle force is dominated by the pressure contribution if 
ρp/ρ = 1.

The motion of the eight particles follows the theoretically expected symmetries very accurately. The particles at the left 
bottom quarter of Fig. 11(a) and 11(b) are particle 1 and 5, respectively. Furthermore, in both figures, the numbering is 
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anti-clockwise. The theoretically expected symmetries are v1
1 = v2

2, v1
2 = v2

1, v1
3 = v2

3 = 0, ω1
1 = ω2

2 = 0, ω1
3 = −ω2

3, v1 =
v3 = −v6 = −v8, v2 = v4 = −v5 = −v7, ω1 = ω3 = ω6 = ω8, and ω2 = ω4 = ω5 = ω7 (the superscripts denote the particle 
numbers). All these equations have been explicitly checked for case TG2; during the entire simulation, all equations were 
satisfied with errors less than 10−4.

6. Conclusions

A staggered overset grid method for resolved simulation of incompressible flows around moving spheres has been pre-
sented. In this method, body-fitted spherical polar grids attached to the moving spheres are used to resolve the flow in the 
vicinity of the spheres. An accurate representation of the sharp particle–fluid interface is thus provided. The spherical grids 
are overset on a fixed Cartesian background grid. The Navier–Stokes equations in spherical coordinates and in Cartesian 
coordinates are respectively approximated on the spherical and Cartesian grids, using the standard staggered second-order 
finite difference scheme. The velocities and pressures on different grids are coupled by third-order Lagrange interpolations. 
A comprehensive description of the method has been provided, including the description of the data structure and commu-
nication algorithms required for an implementation in the form of an MPI parallel program.

The solver has been validated for seven different cases, four Stokes flows and three Navier–Stokes flows. The first three 
Stokes flows were the flows around a translating sphere, oscillating sphere and a rotating sphere. The analytical solutions 
for these flows are known, and the results obtained indicated pointwise convergence of the numerical to the analytical so-
lutions. More specifically, it was found that the spatial maximum norm of the error in both velocity and pressure dropped 
below 1% of the reference values if the grid contains 30 points per particle diameter. The fourth test case was an instanta-
neously accelerated sphere. The effects of the step change of the velocity of the sphere were compared with those predicted 
by the Basset–Boussinesq–Oseen equation of particle motion. Good agreement was obtained within several time steps.

The first Navier–Stokes case was the flow due to a translating FCC array of spherical particles at particle volume fraction 
0.2. The grid refinement study displayed a clear convergence of both the pressure and the viscous part of the drag force. 
Second, a sphere falling in a laminar channel flow was simulated using grid refinement. The results were compared to results 
obtained by two immersed boundary methods, IBM1 (first-order) and IBM2 (second-order, due to retraction of the particle 
surface), which were published in literature [5]. The results of the overset grid simulation at the highest resolution and those 
of the IBM2 simulation at the highest resolution displayed a very good agreement. In this case, the radial stretching facility 
of the overset grid method was exploited, such that the overset simulation at the highest resolution used approximately 
260 times less grid points and 20 times less computing time than the IBM2 simulation at the highest resolution. The radial 
stretching facility was also used in the third Navier–Stokes case, incompressible three-dimensional Taylor–Green flow with 
8 freely moving particles. The effect of grid refinement was shown for this flow, as for the other flows in this paper.

In the present method, the spherical grids do not overlap each other. Thus particle–particle contact cannot be simulated. 
Simulations in which particles closely approach each other at random locations require a fine Cartesian background grid (the 
minimum number of grid points across the gap between particles needs to be at least ten). Therefore, the present method 
is intended for relatively theoretical studies, for parallel simulations of incompressible flows with a low volume fraction of 
non-colliding solid spherical particles, flows that are described by an initial boundary value problem of the Navier–Stokes 
equations that is not too complicated for a direct numerical simulation in which the Navier–Stokes equations are accurately 
solved without simplification of the equations in any part of the fluid domain. In the opinion of the author, particle-resolved 
direct numerical simulation of cases with multiple non-colliding particles are useful for insight into particle–fluid interaction 
and for validation of point-particle models in turbulent flows, even if collisions are prevented by fixing the particles or 
limiting their motion in another way, see for example [37] and [23]. Furthermore, the overset grid method can be used to 
validate and benchmark other methods for particle-resolved simulation (for example, in the case of the falling sphere, not 
only the overset grid method, but also the immersed boundary methods IBM1 and IBM2 were tested).

To increase the flexibility and applicability of the present method, there are several possibilities. The first option is to 
allow mutual overlap of spherical grids. (In fact, the routines for interpolating from one spherical grid to another and for 
cutting out parts of spherical grids have been implemented in the solver, but apart from the observation that these routines 
work robustly, they have not been validated yet.) A second option is to construct an (implicit) method in which the radial 
extent of the spherical grids is kept as small as possible and the Cartesian background grid is nonuniform and adaptive. One 
could also think of a fine spherical grid overset on a local fine Cartesian grid, which is on its turn overset on the background 
Cartesian grid. For the narrow gaps between particles one could attempt to devise a deformable (perhaps non-orthogonal) 
grid overset on mutually overlapping spherical grids.
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Appendix A. Parallel implementation

A common parallel algorithm for particle-resolved simulation is the so-called master and slave technique developed by 
Uhlmann [38]. In that technique the block structure is two-dimensional, while each time when a particle center moves to 
another block, the fluid variables associated to a particle are transferred to the processor of the new block (the particle gets 
another master). The present method differs from the master and slave technique in two important respects: (1) in order 
to minimize the total area of the contact surfaces of the blocks and the related MPI communication, the present method 
employs a three-dimensional instead of a two-dimensional block structure, and (2) in the present method, the center of 
the corresponding moving particle does not necessarily reside inside the Cartesian block on that processor, because a given 
spherical field stored on a certain processor remains on this processor during the entire simulation. The latter is done to 
avoid MPI communication of entire three-dimensional spherical fields.

As explained in section 3.1, each of the M processors contains the Cartesian fluid field of one Cartesian block and the 
spherical fluid field of maximum Np1 particles (Np/M ≤ Np1 < Np/M +1). Thus, if Np = MNp1, each processor is associated 
with Np1 + 1 grids, namely of the Cartesian block grid and the grids of Np1 particles. The acceptor lists and the primary and 
secondary donor lists, which include all interpolation weight coefficients, are accordingly distributed over the processors. 
Furthermore, the hydrodynamic forces exerted on the particles are distributed over the processors. However, all reference 
position vectors, all particle translational and angular velocities, the pointer array relating shadow to physical particles and 
the block lists containing particle numbers are stored on each processor. This is not strictly necessary for the algorithm, but 
it is convenient and not expected to produce significant overhead or affect the scalability of the solver, provided the number 
of particles is not too large (say less than 104). Under this condition, the resources required are almost entirely determined 
by the arrays for the fluid motion on the Cartesian and spherical grids, and these arrays are, for a given particle or a given 
block, stored on one processor only.

With respect to the actions in each time step in subsection 3.6, MPI communication is required in substeps 5, 8, 9, 11, 
13, 15 and 16. In substep 5, after the particle translational and angular velocities have been updated on a given processor 
for the Np1 particles associated to the processor, these quantities are broadcasted to all other processors. In substep 16, the 
post processing substep, MPI communication is required for the computation of extrema and integrals over the entire flow 
domain. The MPI communication in the other substeps is related to either setting up the interpolation structure, performing 
the interpolations, or determining the fluid variables at boundary points.

Let us consider the determination of the interpolation structure on a given processor m. Since the Cartesian type arrays 
are equipped with multiple dummy layers, no MPI communication is required to fill the type arrays. Also, the construction 
of the acceptor lists does not require MPI communication, but the construction of the donor lists does. Processor m, being a 
future acceptor, prepares an a priori unknown number of fixed-length packages for distribution to other processors. A given 
package contains a package identification number, the number of acceptor interpolation points represented by the package, 
the processor number mb = m, the acceptor grid number b, the donor grid number a, and, for all interpolation points 
represented by the package, the grid acceptor grid indices (i, j, k). All interpolations points in a given package have the 
same donor grid a. Thus the package is prepared to be sent to processor ma (which could be equal to m). Processor m
may prepare multiple packages for given processor ma . Because of the fixed size of the packages, the last package in a 
row of packages prepared for ma may be partially empty. After the preparation of a row of packages, processor m uses 
MPI communication to inform each processor ma how many packages it can expect from processor m. At the same time 
processor m is informed by other processors how many packages it can expect from them. Afterwards processor m, being a 
future acceptor, uses MPI to send all packages in the row sequentially to each processor ma . At the same time, processor m, 
being also a future donor, may receive packages from other processors. All received packages are copied into the primary 
donor lists.

After processor m has filled its primary donor lists, it collects additional information for the interpolation points in these 
lists. Going through its primary donor lists, it performs the following actions for each interpolation point in the lists. First, 
being a future donor, it recomputes the acceptor interpolation coordinates of a for each acceptor interpolation point xb , 
using the acceptor grid number and the grid indices (i, j, k) of the acceptor interpolation point. Subsequently, the indices of 
the reference corner of the corresponding interpolation stencil (which resides on processor m) and the interpolation weights 
are determined and stored in the secondary donor lists.

The interpolations themselves are performed in the following way. We remind that the donor lists contain the package 
identification numbers that were sent by the acceptor processors when the interpolation lists were set up. According to 
these identification numbers floating point packages of fixed size are prepared. Such a package contains the package iden-
tification number (converted to floating point format) and the corresponding interpolated values. MPI is used to send the 
package to the acceptor processor. After the MPI communication, the contents of the received packages is copied to the 
corresponding interpolation points, whose location is received from the acceptor lists. Before and after the interpolations 
are performed, the boundary conditions routines are called. The latter routines require MPI communication to copy the fluid 
variables at Cartesian dummy points from other blocks.



294 A.W. Vreman / Journal of Computational Physics 333 (2017) 269–296
Appendix B. Interpolation formulas

In this appendix the formulas of the third-order interpolations are specified, which are based on quadratic Lagrange 
polynomials. For this purpose, the fluid variables are written as functions of grid indices. For example q(i, j, k) denotes q at 
the Cartesian pressure grid point with indices i, j and k, while q̃(i, j, k) denotes q at the spherical pressure grid point with 
indices i, j and k. The summation convention is not used in this subsection.

Let us consider the pressure at x, where x is an interpolation point (i′′, j′′, k′′) on a Cartesian grid and is connected to 
an interpolation stencil with reference corner point (i′, j′, k′) on a spherical grid. The coordinate transformation specified 
in (1) provides (r, θ, φ) that correspond to x. We define W r

i as the three weight coefficients of one-dimensional third-order 
Lagrange interpolation at query point r using sample points i′ , i′ + 1, and i′ + 2. Analogously, W θ

j and W φ

k are defined. 
Consecutive application of the three one-dimensional interpolations leads to the 27 weight coefficients

wijk = W r
i W θ

j W φ

k (73)

and the following interpolation formula

q(i′′, j′′,k′′) =
2∑

i=0

2∑
j=0

2∑
k=0

wijkq̃(i′ + i, j′ + j,k′ + k). (74)

The formula for interpolation of the pressure from Cartesian to spherical grids is analogous. For each pressure interpolation 
point on the spherical grid, the weight coefficients are implied by three consecutively applied one-dimensional third-order 
Lagrange interpolations on a Cartesian interpolation stencil.

The interpolations of the velocity components are more complicated, but they are all based on equation (4). Suppose 
that (i′′, j′′, k′′) are the indices of a Cartesian interpolation point of um . The interpolation of A1mũ1 is performed using three 
consecutively applied one dimensional Lagrange interpolations using an interpolation stencil consisting of 3 ×3 ×3 staggered 
ũ1 points. The corresponding weights are denoted by wm1i jk . The corresponding reference corner point on the spherical ũ1
grid is denoted by (i′m1, j

′
m1, k

′
m1). The interpolations of A2mũ2 and A3mũ3 are performed on stencils of staggered ũ2 points 

and ũ3 points, respectively, and the corresponding weights are wm2i jk and wm3i jk , while the corresponding reference corner 
points are (i′m2, j

′
m2, k

′
m2) and (i′m3, j

′
m3, k

′
m3). The interpolation formula for Cartesian velocity component um is then given 

by

um(i′′, j′′,k′′) = v p
m +

3∑
l=1

2∑
i=0

2∑
j=0

2∑
k=0

w ′
mli jkũl(i′ml + i, j′ml + j,k′

ml + k), (75)

where

w ′
mli jk = wmli jk Alm(i′ml + i, j′ml + j,k′

ml + k). (76)

For the interpolation of a spherical velocity component ũm at spherical interpolation point (i′′, j′′, k′′) and associated in-
terpolation stencils on staggered Cartesian grids with reference corner points (i′ml, j

′
mlk

′
ml) and corresponding interpolation 

weights wmli jk , the following formula is used

ũm(i′′, j′′,k′′) = −
3∑

l=1

Aml(i′′, j′′,k′′)v p
l +

3∑
l=1

2∑
i=0

2∑
j=0

2∑
k=0

w ′
mli jkul(i′ml + i, j′ml + j,k′

ml + k), (77)

where

w ′
mli jk = Aml(i′′, j′′,k′′)wmli jk. (78)

Thus in the interpolation from Cartesian to spherical grids (77)–(78), the transformation matrix is effectively applied to 
interpolated spherical velocities, whereas in the interpolation from spherical to Cartesian grids (75)–(76), the interpolation 
is effectively applied to transformed velocities. In this manner, the transformation matrix A is required on the spherical 
grids only, such that the available versions of this matrix (initially computed versions for the different staggered locations 
on the spherical grid) can be used. Thus for each interpolation of a velocity component, 81 weight coefficients are computed 
and stored in the secondary interpolation lists. Also, the first term on the right-hand side of (77) is stored in the secondary 
interpolation lists.

Appendix C. Computing times

The computing times required for the overset grid simulations presented in sections 4 and 5 are summarized in Table 5. 
The CPU times are the wall clock times multiplied by the number of processors (cores, threads), which was 8 in each case. 
An Intel Xeon 2680v2 machine, equipped with OpenMPI and the gfortran compiler, was used.
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Table 5
CPU times of Stokes test cases (column 2) and Navier–Stokes test cases (column 4).

case CPU time [hours] case CPU time [hours]

Tran1 0.5 FCC1 2.7
Tran2 16.9 FCC2 19.3
Osc1 0.7 FCC4 191
Osc2 14.1 FS1 0.3
Rot1 0.1 FS2 5.5
Rot2 0.3 FS4 150
Step1 0.5 TG1 3.8
Step2 8.5 TG2 110

Table 6
Uniform flow past a fixed sphere. Maximum and L2 norms of errors at t = 1. The numbers in brack-
ets are estimates of the order of accuracy based on κ − 1 and κ . The pressure q was normalized by 
qmax = 3.

κ dp/h ‖u − uexact‖∞ ‖q − qexact‖∞ ‖u − uexact‖2 ‖q − qexact‖2

1 15 0.001862 0.00648 0.0001732 0.000647
2 30 0.000387 (2.27) 0.00325 (1.00) 0.0000356 (2.28) 0.000318 (1.03)
4 60 0.000122 (1.66) 0.00171 (0.93) 0.0000088 (2.02) 0.000122 (1.38)

A small test of scalability of the parallel implementation up to 8 processors was performed by repeating the first 100 
time steps of case TG2, on M = 1, 2, 4 and 8 processors. The scaling efficiency for M processors is defined by the wall clock 
time for M = 1, divided by the product of M and the wall clock time for M processors. The scaling efficiencies in this test 
were excellent since they appeared to be larger than one: 1.17, 1.30 and 1.11 for M = 2, 4 and 8.

Furthermore, the computing times of the overset grid simulation FS4 and the immersed boundary simulation using 
method IBM2 (see section 5.2) were compared. The results of these simulations displayed the same accuracy (see sec-
tion 5.2). In order to perform this comparison for the same computer architecture, (parts of) these simulations were repeated 
on Intel Xeon 2690v3 nodes equipped with an Intel compiler (ifort). Since due to the 260 times larger grid, IBM2 required 
much more memory than FS4, more than 8 (namely 30) processors were used for IBM2. It was found that the CPU time was 
8 ∗ 13.0 = 104 hours for FS4 (J.G.M. Kuerten, private communication) and 30 ∗ 74.7 = 2241 hours for IBM2 (W.P. Breugem, 
private communication). It is fair to scale the ratio of the computing times with the ratio �t/�tvisc . This ratio is 0.36 
for FS4 and 0.33 for IBM2 (For IBM2, �t = (H/Ub)/17000, while �tvisc is the theoretical maximum viscous time step for 
a 3-stage Runge–Kutta method). Thus, it is concluded that, for this dilute flow, the overset grid method is approximately 
(2240/104) ∗ (0.33/0.36) ≈ 20 times faster than the immersed boundary method.

Appendix D. Order of accuracy (steady Stokes flow)

To verify that the first-order behaviour of the pressure was not necessarily due to unsteady effects, a convergence analysis 
was performed for the steady state variant of the translating sphere case: uniform Stokes flow past a fixed sphere, for dp = 1, 
ν = 1 and free stream velocity equal to −e1. The analytical solution was prescribed at t = 0 and on the outer boundaries 
of the Cartesian domain for all times (0 ≤ t ≤ 1). The domain sizes were the same as in case Tran1. The spherical and 
Cartesian grids contain 5κ × 24κ × 48κ and (60κ)3 cells, and three simulations were performed (κ = 1, 2 and 4). In Table 6, 
the maximum and L2 norms are shown for both the velocity and the pressure. The estimated order of accuracy based on 
κ − 1 and κ , denoted by the number in brackets, is defined by 2 log(Eκ−1/Eκ ), where Eκ is the error in the quantity under 
consideration. Both the maximum and L2 norm were based on all internal points. The L2 norms were normalized by the 
total volume of all internal cells.
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