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Statistical profiles of the first- and second-order spatial derivatives of velocity and
pressure are reported for turbulent channel flow at Reτ = 590. The statistics were ex-
tracted from a high-resolution direct numerical simulation. To quantify the anisotropic
behavior of fine-scale structures, the variances of the derivatives are compared with
the theoretical values for isotropic turbulence. It is shown that appropriate combina-
tions of first- and second-order velocity derivatives lead to (directional) viscous length
scales without explicit occurrence of the viscosity in the definitions. To quantify the
non-Gaussian and intermittent behavior of fine-scale structures, higher-order mo-
ments and probability density functions of spatial derivatives are reported. Absolute
skewnesses and flatnesses of several spatial derivatives display high peaks in the near
wall region. In the logarithmic and central regions of the channel flow, all first-order
derivatives appear to be significantly more intermittent than in isotropic turbulence
at the same Taylor Reynolds number. Since the nine variances of first-order velocity
derivatives are the distinct elements of the turbulence dissipation, the budgets of these
nine variances are shown, together with the budget of the turbulence dissipation. The
comparison of the budgets in the near-wall region indicates that the normal deriva-
tive of the fluctuating streamwise velocity (∂u′/∂y) plays a more important role than
other components of the fluctuating velocity gradient. The small-scale generation
term formed by triple correlations of fluctuations of first-order velocity derivatives is
analyzed. A typical mechanism of small-scale generation near the wall (around y+

= 1), the intensification of positive ∂u′/∂y by local strain fluctuation (compression
in normal and stretching in spanwise direction), is illustrated and discussed. C© 2014
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4891624]

I. INTRODUCTION

Direct numerical simulation (DNS) is a powerful tool to obtain insight in the details of incom-
pressible turbulent channel flow.1, 2 Since the first DNS of turbulent channel flow in 1987,3 many
direct numerical simulations of channel flow have been performed, see Refs. 4–18 for some of
them. One trend in this field of research is to perform the simulations at increasingly large Reynolds
number; Reτ = 4000 has recently been passed.17, 18 Another recent trend is to increase the numerical
resolution without increasing the Reynolds number.11, 12, 14–16 For Reτ = 180 higher resolution was
shown to be essential for an accurate prediction of dissipation spectra.15

Turbulence is usually described in terms of statistics and topological structures. Both types of
description are important to advance the knowledge about turbulence. For turbulent channel flows,
the most common statistical quantities are the mean velocity profile, root mean square profiles of the
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fluctuating velocity components, and the Reynolds shear stress. Other common statistical quantities
are those related to Reynolds stress budgets, which give information about the turbulence production,
dissipation, transport, and redistribution of the Reynolds stresses.

Since the turbulence dissipation is expressed in first-order spatial velocity derivatives, informa-
tion on the velocity gradient is important to understand the fine-scale structure of the turbulence.
While in many studies the velocity gradient tensor is used to understand the topological structure of
the turbulence,19, 20 statistical characterization of the velocity gradient tensor is probably as impor-
tant. For example, Batchelor and Townsend measured statistical moments of first- and higher-order
spatial derivatives of the velocity to understand the fine-scale turbulence.21–23 For turbulent channel
flow statistics of the variances of individual first-order derivatives were first studied by Antonia et al.
up to Reτ = 395.24

Several statistical moments and correlations of the velocity gradient and higher-order derivatives
are required for the budget of the turbulence dissipation rate. For turbulent channel flow, this budget
has been computed by Mansour et al.25 The budget of the turbulence dissipation rate is similar to
the enstrophy budget, which has been estimated by Tennekes and Lumley.26 So far computations
of the channel flow budgets of dissipation rate,25 enstrophy,27, 28 and vorticity variances27 have
been performed up to Reynolds number Reτ = 395. Recent results for the skewnesses of diagonal
components of the velocity gradient tensor at Reτ = 180 show that the skewness of the longitudinal
derivative of the streamwise velocity peaks around −1.5,15 much larger (in absolute terms) than
the skewness typically observed in homogeneous isotropic turbulence,29 and the scarcely available
experimental values for wall-bounded flows.30 For homogeneous isotropic turbulence the statistical
characteristics of spatial velocity derivatives have more elaborately been investigated: probability
density functions (pdfs) and higher order moments, such as skewness and flatness, for both velocity
gradient and pressure gradient have been computed.31–36

In the present paper we report statistics of the first- and second-order spatial derivatives of
the velocity and pressure in turbulent channel flow at Reτ = 590. The moderate Reynolds number
allowed us to perform the DNS at enhanced resolution and for a long averaging time. Nonetheless,
the Reynolds number is higher than in previous studies in which statistics of first-order derivatives
and the budget of the dissipation rate were shown.24, 25, 27 The data files of the statistics can be
downloaded at www.vremanresearch.nl.

The statistics of the spatial derivatives in turbulent channel flow are interesting, since they quan-
tify the fine-scale structure of a canonical inhomogeneous turbulent flow. In view of the Kolmogorov
theory of locally isotropic turbulence, it is relevant to investigate to which extent the turbulent motion
of this flow behaves as homogeneous isotropic turbulence at increasingly fine scales (increasing order
of derivatives) and increasing distance from the wall. A documentation of the turbulent statistics of
individual derivatives of velocity and pressure in a turbulent solution of the Navier-Stokes equations
of a well-defined case is also relevant in view of the long-standing open question of the regularity
(degree of smoothness) of solutions of the Navier-Stokes equations.37

Fully new elements of the present paper are: (1) the variances of the second-order derivatives and
the use of second-order derivatives in the discussion of isotropic behavior of small scales in turbulent
channel flow, (2) higher-order statistics and probability density functions of first-order derivatives,
including flatness profiles, which quantify the intermittency of first-order velocity and pressure
derivatives in turbulent channel flow, and (3) the decomposition of the budget of the dissipation rate
into the nine budgets of the variances of the first-order velocity derivatives, with particular focus on
the budget of the variance of ∂u/∂y and on the triple correlations that represent generation of small
scales.

The contents of the paper is as follows. In Sec. II we will give definitions, introduce the transport
equations for the first-order velocity derivatives, and specify the relations for the first- and second-
order spatial derivatives in homogeneous isotropic turbulence (to be able to discuss the anisotropy
of derivative tensors in channel flow). In Sec. III we will describe the numerical method and show
derivative spectra to check the accuracy of the results at the resolution used in the simulation. In
Sec. IV we will present results for the variances of the first- and second-order derivatives and compare
them with the theoretical values in homogeneous isotropic turbulence. These variances determine
the magnitudes of the different contributions to the turbulence dissipation and its destruction. The
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anisotropy of these quantities will be discussed with a focus on the center of the channel. In Sec. V
we will quantify the non-Gaussianity and intermittency of the fine scales with the use of probability
density functions and their characteristics (skewness and flatness). In Sec. VI we will present budgets
of the dissipation rate equation and variances of the first-order derivatives of velocity, and we will
present results for the 27 triple correlations that constitute the fine-scale generation term of the
turbulence dissipation budget. The conclusions will be summarized in Sec. VII.

II. DEFINITIONS AND GOVERNING EQUATIONS

A. Navier-Stokes equations

The Navier-Stokes equations for incompressible channel flow are

uα,α = 0, (1)

∂t ui + uαui,α = −p,i + ν�ui + δi1, (2)

where ui denotes the velocity component in direction xi, p the pressure divided by the density, ν the
kinematic viscosity, t time, and δi1 is the (i, 1) component of the Kronecker delta. In this entire paper
the summation convention is only applied for the Greek indices α, β, and γ . The spatial directions
x1, x2, and x3 refer to the streamwise, normal, and spanwise direction. Spatial differentiations are
denoted by subscripts, for example, u1,12 = ∂2u1/∂x1∂x2, and u1,αα = �u1. For brevity we also define
x = x1, y = x2, z = x3, u = u1, v = u2, w = u3. In addition we define ux = u1,1, uy = u1,2, uxx =
u1,11, and so forth.

In the statistical description of a turbulent flow, it is common practice to apply the Reynolds
decomposition to variables, for example, u = u + u′, where the overbar denotes the averaging
operator, such that u is the mean and u′ the fluctuation. The variance of u is defined by u′2 and the
root mean square value, Rms(u), is equal to the standard deviation σu = (u′2)1/2. The standardized
third and fourth central moments of the probability density function are called the skewness, S(u′) =
u′3/σ 3

u , and the flatness F(u′) = u′4/σ 4
u .

Invariants of a turbulent flow are quantities that are invariant to an orthogonal coordinate
transformation, e.g., a rotation or a reflection. Basic invariants of the primary variables are the
turbulence kinetic energy, K = 1

2 u′
αu′

α , and the pressure variance, p′2. The most basic invariants of
the first-order derivatives are

A = |∇u′|2 = u′
α,βu′

α,β, (3)

Ap = |∇ p′|2 = p′
,α p′

,α, (4)

while the most basic invariants of the second-order derivatives are

B = |∇∇u′|2 = u′
α,βγ u′

α,βγ , (5)

B p = |∇∇ p′|2 = p′
,αβ p′

,αβ . (6)

The invariant A is proportional to the turbulence dissipation of kinetic energy, while the invariant B is
proportional to the destruction of the turbulence dissipation. In this paper, the turbulence dissipation
is defined by ε = νA, like in Mansour et al.25

Alternative definitions of the turbulence dissipation are ν� and ν S̃, where � = νω′
αω′

α and
S̃ = 2νs ′

αβs ′
αβ , based on the vorticity vector ω = ∇ × u and strain rate tensor s = 1

2 (∇u + (∇u)T ),

respectively. It is straightforward to derive � = A − Y and S̃ = A + Y with Y = (u′
αu′

β),αβ . This
implies that A is precisely the average of � and S̃. In addition, the structure of Y implies that A, �,
and S̃ are identical in homogeneous turbulence. In inhomogeneous turbulence the three quantities
are not the same, but the differences are usually small.20, 24, 26, 38 In the present channel flow, |Y|/A is
about 0.01 at the center, and the maximum of this ratio is about 0.04, attained around y+ = 30.
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To investigate the invariants defined above in more detail, it is interesting to consider the
composition of the invariants. For this purpose we define,

Ai j = u′
i, j

2
, Ap

j = p′
, j

2
, (7)

Bi jk = u′
i, jk

2
, B p

jk = p′
, jk

2
. (8)

The transport equation of Aij can be derived by differentiation of Eq. (2) with respect to xj, multi-
plication of the result with 2ui, j, application of the averaging operator, and finally subtraction of the
equation for u2

i, j . This leads to

∂t Ai j + uα Ai j,α = M (1)
i j + M (2)

i j + M (3)
i j + Gi j + �i j − 2νBi j + T (t)

i j + T (p)
i j + T (v)

i j , (9)

where

M (1)
i j = −2u′

i, j u
′
α, j ui,α, (10)

M (2)
i j = −2u′

i, j u
′
i,αuα, j , (11)

M (3)
i j = −2u′

i, j u
′
αui, jα, (12)

Gi j = −2u′
i, j u

′
α, j u

′
i,α, (13)

�i j = 2p′
, j u

′
i,i j , (14)

Bi j = u′
i, jαu′

i, jα, (15)

T (t)
i j = −(u′

αu′
i, j

2),α, (16)

T (p)
i j = −2(p′

, j u
′
i, j ),i , (17)

T (v)
i j = ν�Ai j . (18)

The first three terms at the right-hand side represent production by the mean flow (the mean shear
and the gradient of mean shear). These three terms vanish in homogeneous turbulence. The term Gij

is also a production term. We call this term the fine-scale generation. It is intimately connected to
the generation of fine scales by vortex stretching. The three components of each Gij are defined by

Gi jk = −2u′
i, j u

′
k, j u

′
i,k . (19)

The fifth term is a pressure strain type of term, �ij; via the pressure gradient, turbulence dissipation
is redistributed from one velocity component to another. The sixth term is negative by definition. It
is the called the destruction term, because it destructs the turbulence dissipation related to Aij. The
last three terms are transport terms, turbulence transport, transport by pressure gradient, and viscous
transport, respectively. These three terms, which are in divergence form, also vanish in homogeneous
turbulence.

The sum of the nine equations for Aij provides the equation of A,

∂t A + uα A,α = M (1) + M (2) + M (3) + G − 2νB + T (t) + T (p) + T (v), (20)

where the omission of the subscript ij indicates a quantity summed over the nine combinations for
(i, j). After multiplication of this equation by ν, the transport equation of turbulence dissipation found
in Mansour et al.25 is recovered in somewhat different notation. It appears that �ij appears in the
equation for Aij, while due to the incompressibility constraint, there is no such term in the equation
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for A. This is similar to the pressure strain term that appears in the Reynolds stress equations but not
in the turbulence kinetic energy equation. For homogeneous flows the equation for A reduces to

∂t A = G − 2νB, (21)

and A and B are then equivalent to the mean enstrophy and mean palinstrophy, respectively, while
2G is then equivalent to the mean generation of enstrophy by vortex stretching.

The nine equations for the variances of the first-order velocity derivatives allow interesting
combinations. We will consider

Aui = Ai1 + Ai2 + Ai3, (22)

which provides information about the fine scales in the velocity component ui, while ν Aui is the
well-known dissipation term in the transport equation of the Reynolds stress tensor component u′

i u
′
i .

Another logical recombination is Ax j = A1 j + A2 j + A3 j , which provides information about the
variation of the velocity in the xj-direction. The pressure strain terms in the equation for Ax j vanish
for each j.

B. Isotropic relations

As a point of reference for the inhomogeneity, it is useful to present some analytical properties
of the spatial derivatives in homogeneous isotropic turbulence. In homogeneous isotropic turbulence,
the average operator can be interpreted as the domain average over a sufficiently large box with
periodic boundary conditions in the three spatial directions. Quantities averaged in this way do not
depend on location but on time. There is no mean flow, thus u′

i = ui . The three diagonal components

of u2
i, j are equal and can be represented by u2

1,1. Also the six off-diagonal components of u2
i, j are

equal; they are represented by u2
1,2. It is well-known that u2

1,2 = 2u2
1,1, see, for example, Batchelor,39

such that A = 15u2
1,1. Furthermore, it is evident that p2

,1 = p2
,2 = p2

,3.
The 18 (3 times 6) second-order velocity derivatives fall apart into 4 groups. Within a group

the variances are the same due to the symmetry of isotropic turbulence, such that each group can
be represented by a single variance. The analytical relations between the 4 representative variances
have been derived by Von Kármán and Howarth:40 u2

1,22 = 3u2
1,11, u2

1,12 = 2
3 u2

1,11, and u2
1,23 = u2

1,11.

Summation of all the variances leads to B = 35u2
1,11, which implies

u2
1,11 = 3(B/105), (23)

u2
1,22 = 9(B/105), (24)

u2
1,12 = 2(B/105), (25)

u2
1,23 = 3(B/105). (26)

The derivation of these relations was not based on the Navier-Stokes equations, but on the two point
correlation function Ri j = ui (x)u j (x + r), the rotational and reflection symmetry of homogeneous
isotropic turbulence, and on the incompressibility constraint.

To derive similar relations for the second-order derivatives of the pressure, we define the
correlation function Q(r) = p(x)p(x + r). For symmetry reasons Q(r) = p2q(r ), where q is an
even function of r (r2 = |r|2 = r2

1 + r2
2 + r2

3 ). Without loss of generality, the mean pressure is set to
zero. The variance of the second-order derivative p, ij is rewritten as

p2
,i j = pp,i i j j =

( ∂4 Q

∂r2
i ∂r2

j

)
r=0

. (27)
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To compute the derivatives of Q = p2q, we use the Taylor expansion q = q0 + q2r2 + q4r4 + O(r6)
and obtain

p2
,11 =

(∂4 Q

∂r4
1

)
r=0

= 24q4 p2, (28)

p2
,12 =

( ∂4 Q

∂r2
1 ∂r2

2

)
r=0

= 8q4 p2. (29)

Thus p2
,11 = 3p2

,12.
Finally, we specify the 27 distinct contributions to the fine-scale generation term G in isotropic

turbulence. They can be deduced from the third-order derivatives of the triple correlation function
ui (x)u j (x)uk(x + r), since algebraic manipulations allow each component Gijk to be expressed as a
linear combination of the forms ui u j uk,lmn . The triple correlation function can be written in terms of
r1, r2, r3, and an odd function of r.39 Using the Taylor expansion of the latter function and algebraic
manipulations, we derived the expressions for Gijk. The 27 components fall apart into 5 groups and
the results for the 5 group representatives are

G111 = −2u3
1,1 = 6(G/105), (30)

G112 = −2u1,1u2,1u1,2 = 1

2
(G/105), (31)

G121 = −2u2
1,2u1,1 = 4(G/105), (32)

G122 = −2u2
1,2u2,2 = 4(G/105), (33)

G123 = −2u1,2u3,2u1,3 = 6(G/105). (34)

An alternative procedure to derive these relations has been described by Pope (pp. 205–206).41

III. NUMERICAL METHOD AND VALIDATION

We simulated incompressible turbulence channel flow at Reτ = 590 in the computational domain
[0, 2πH] × [0, 2H] × [0, πH] with a constant streamwise forcing (H is the channel half-width).
This size of the domain is the same as in Ref. 5. It is sufficiently large for our purpose, since spatial
derivatives peak at relatively small scales. The Reynolds number Reτ is defined by uτ H/ν, where uτ

by definition is the wall value of (νdu/dy)1/2. Furthermore, we define x+ = x/δν , y+ = y/δν , and z+

= z/δν , where δν = ν/uτ = H/Reτ is the viscous length scale very close to the wall.
The numerical method is fully spectral, Fourier in streamwise and spanwise, and Chebyshev

tau in the normal direction. The method, based on the equations for the normal vorticity and
�v, is an independent implementation of the method described by Kim, Moin, and Moser.3 This
implementation was previously used for simulations at different Reτ .15, 42, 43 The time integration
scheme is a three-stage Runge-Kutta method with implicit treatment of the viscous terms.5, 44

The number of spectral modes used for the simulation at Reτ = 590 was 768 × 385 × 768.
Since the method is dealiased with the 3/2-rule in the periodic directions, the velocity, pressure, and
their derivatives were in physical space available on a grid with 1152 × 385 × 1152 points. After a
transient period, statistics were collected during a relatively long period of 100H/uτ (800 000 time
steps). The statistics were based on 3200 instantaneous fields (one field per 250 time steps); for
statistical profiles the averaging was performed over the homogeneous directions (x and z), time,
and the two channel halves. For each probability density function 2001 bins were used. The uniform
bin size was 0.04 times the standard deviation of the corresponding variable. This case is listed as
Case 1 in Table I. To address the effect of statistical sample size statistics were also obtained for a
shorter period 40H/uτ (Case 2). To address the effect of Reynolds number, post-processing software
developed for the present simulation at Reτ = 590 was applied to 1600 stored fields from a recent
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TABLE I. Numerical parameters: h+
1 and h+

3 denote the grid size in streamwise and spanwise directions (scaled with δν ),
respectively, and h+

2,c the maximum grid size in the normal direction (attained at the center of the channel, scaled with δν ).
All results shown in this paper apply to Case 1, unless mentioned otherwise.

Case Reτ Box size Resolution h+
1 h+

2,c h+
3 Time step Averaging time

1 590 2πH × 2H × πH 768 × 385 × 768 4.8 4.8 2.4 0.000125H/uτ 100H/uτ

2 590 2πH × 2H × πH 768 × 385 × 768 4.8 4.8 2.4 0.000125H/uτ 40H/uτ

3 180 4π H × 2H × 4
3 π H 384 × 193 × 192 5.9 2.9 3.9 0.00025H/uτ 200H/uτ

high-resolution simulation at Reτ = 180 (Case 3).15 Unless indicated otherwise, figures and data
apply to Case 1.

The adequacy of the numerical results has been validated in several ways. First, the numerical
results were compared with the standard database at Reτ = 590, the one of Moser, Kim, and Mansour
(MKM),5 who used 384 × 257 × 384 spectral modes in their simulation. We will refer to this database
as the MKM database. Good agreement with most statistics available for that simulation was found;
some examples of the comparison will be shown later on. Second, the present numerical statistics
were also compared with statistics averaged over a shorter interval (40H/uτ , Case 2); some examples
of this comparison will also be shown later on. Third, the total balances in the budgets of turbulence
kinetic energy and turbulence dissipation rate were checked. The deviation of these profiles from
zero is an indication of the effect of discretization errors and statistical averaging time. For the
turbulence kinetic energy, the balance was less than 0.1% of the turbulence dissipation rate profile.
For the turbulence dissipation rate, the balance was less than 1% of the destruction of dissipation
profile, with an exception of the region very close to the wall (y+ < 0.1). These exceptions were
investigated, and it was concluded that they are caused by the viscous transport term very close to the
wall and do not influence the results further away from the wall. The viscous transport terms contain
third-order velocity derivatives, and to capture those accurately everywhere even higher resolution
in the wall-normal direction is required. Fourth, the spectra of first- and second-order derivatives
were checked. These will be discussed below.

Before we present the spectra, we discuss typical behavior of derivative spectra. Consider the
one-dimensional streamwise spectrum Eu(k1) of velocity component u (ki is the wavenumber in
xi-direction). The integral of the spectrum represents the kinetic energy in u. In a turbulent flow,
such a spectrum can be approximated by an increasing function for small k1, an exponentially
decaying function for large k1 (the viscous range), and an inertial k−5/3

1 range in between (see, for
example, Pope).41 The peak of Eu(k1) corresponds to an integral length scale, while the viscous
range is characterized by the Kolmogorov length scale η. The spectrum of the nth order derivative
of u with respect to x1 is then given by k2n

1 E(k1). Thus the spectrum of the first-order derivative ux

increases proportionally to k1/3
1 in the inertial range so that it peaks in the viscous range. For very

large n the contributions from the large-scale and inertial range become negligible and the spectrum
is proportional to k2n

1 exp(−γ1k1), if we assume that Eu decays proportionally to exp (−γ 1k1) in the
viscous range. Measurements indicate γ 1 ≈ 5.2.45 After differentiation with respect to k1 we find
that the derivative spectrum peaks at k1 = 2n/γ 1. The surprising conclusion is that the peak of the
nth order derivative moves to infinite wavenumber for n → ∞. No matter how fine the grid is, there
will always be a high-order derivative that cannot be resolved on a finite grid. The impossibility to
numerically compute derivatives of arbitrarily high order is no problem, since for sufficiently large n
the nth order derivative peaks at much larger wavenumber than the Kolmogorov wavenumber, such
that the derivative is not relevant for the physics of the turbulence. In other words, for very large n the
nth order derivative is active at scales much smaller than the scales where the turbulence dissipation
is active. For infinite n, the former scales have a negligible contribution to the turbulence dissipation
and of course also to the turbulence kinetic energy. These arguments imply that, unlike a velocity
spectrum, a velocity derivative spectrum does not display a clear and Reynolds number dependent
scale-separation, since both peak and tail of the derivative spectrum are in the viscous range.
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FIG. 1. (a) and (b) Examples of spectra of first- and second-order derivatives at y+ = 30; (a) streamwise spectra of wx

(solid, short curve) and wxx (dashed, short curve), spanwise spectra of wz (solid, long curve) and wzz (dashed, long curve);
(b) Chebyshev spectra of wy (solid) and wyy (dashed). (c) and (d) Spectral fall-off (peak value of spectrum divided by tail
value) of (c) streamwise and (d) spanwise spectra as function of y+ for second-order derivatives of u (solid), v (dashed), w

(dashed-dotted), and p (symbols).

For this reason we consider it legitimate to verify the resolution quality of spatial derivatives
by means of a spectral fall-off method (but only for spectral simulations). The spectral fall-off of a
quantity is defined by the peak value of its spectrum divided by the tail value. If the spectral fall-off
of a quantity is not much larger than 1, the quantity is most probably not well-resolved. Spectra of
spatial derivatives and spectral fall-off profiles are shown in Fig. 1. With increase of each order of
the derivative the fall-off of Fourier spectra appears to decrease with about two orders of magnitude.
The comparison between Figs. 1(c) and 1(d) shows that the z-direction is better resolved than the
x-direction. The roughly 100 times larger fall-off for the z-direction is due to the conventional choice
of a grid with h3 = h1/2. Fig. 1(a) indicates that the fall-off of x- and z-spectra of derivatives would
have been comparable if we had chosen h3 = h1. The lowest fall-off (about 10) is found for the

second-order derivative vxx at y+ = 30. Even in this worst case, the error in v′
xx

2 was estimated to
be less than 3%. To obtain this error estimate, the infinite tail of the spectrum of vxx was modeled
with a power law that matched the slope of the simulated spectrum at the wavenumber of steepest
descent before the numerical cusp.

IV. VARIANCES OF SPATIAL DERIVATIVES AND ISOTROPY ANALYSIS

In Subsection IV A we will show results for several decompositions of the invariants 2K, A, and
B, including an overview of all profiles of the first- and second-order spatial derivatives of velocity
and pressure. In Subsection IV B we will use these quantities to investigate the isotropy of small
scales and anisotropy of larger scales in more detail. In Subsection IV C we will investigate the
degree of isotropy of directional Taylor and viscous length scales.
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In channel flows one can distinguish between an inner layer with relevant length scale δν and
outer layer with relevant length scale H.41 The overlap of the inner and outer layer is called the
logarithmic region. Above the logarithmic region, we have the central region, and below the viscous
wall region, which can be subdivided into the viscous sublayer and buffer layer. We define the lower
and upper edge of the logarithmic region at y+ ≈ 100 and y+ ≈ 0.6H/δν , respectively.2 Although
we will show and discuss the logarithmic and central regions in detail, all quantities in the figures
have been non-dimensionalized with the friction velocity uτ and the viscous length scale δν . Unless
explicitly mentioned otherwise, the figures of profiles use square-root scaling for the distance from
the wall (y+) instead of linear or logarithmic scaling. With linear scaling or logarithmic scaling of
the y+ axis, details of either the viscous wall region or the central region would be less clear.

A. Variances of derivatives

The profiles of the invariants 2K and A are well known, since K is the turbulence kinetic energy
and 2νA the turbulence dissipation. For the three components Au, Av , and Aw, much information is
available as well, since these quantities are proportional to the dissipation terms in the budget of the
diagonal Reynolds stresses. However, statistical profiles of individual first-order spatial derivatives
in turbulent channel flow have been shown only a few times, and for lower Reτ than in the present

paper.15, 24 In the former reference the isotropy relations u′
y

2 = u′
z

2 = v′
x

2 = 2u′
x

2 were also inves-
tigated and found to be reasonably well satisfied in the central region at Reτ = 395. No profiles of
individual second-order spatial derivatives of velocity or pressure could be found in the literature.

The profiles of the main invariants of first-order derivatives (A and Ap), and the main invariants
of the second-order derivatives (B and Bp) are shown in Fig. 2(a), together with the profile of the

FIG. 2. (a) Invariants K (divided by 10, dashed-dotted), A (solid), B (dashed), Ap (solid, circles), and Bp (dashed, circles),
all normalized with uτ and δν . (b)–(d) The distinct contributions from each of the three velocity components to 2K, A, and B;
(b) u′2/2K (solid), v′2/2K (dashed) w′2/2K (dashed-dotted); (c) Au/A (solid), Av/A (dashed) Aw/A (dashed-dotted); and
(d) Bu/B (solid), Bv/B (dashed) Bw/B (dashed-dotted). Results from the MKM database are included as thin lines in (b) and
(c). The theoretical isotropic value (1/3) is indicated by a symbol (circle) in (b)–(d).
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turbulence kinetic energy K. In the present non-dimensionalization ν = 1, which means that the
value of the turbulence dissipation is equal to A and the value of the destruction of dissipation equal
to B. At the center of the channel the quantity A is about two orders of magnitudes smaller than
at the wall, and B even three orders of magnitude. Profiles of other quantities are therefore shown
after division by (or scaling with) the profile of an appropriate reference quantity. The appropriate
reference quantity is A for the variances of the first-order velocity derivatives and B for the variances
of the second-order derivatives.

The variances of the velocity components, and those of the first-order derivatives and second-
order derivatives summed per velocity component are shown in Figs. 2(b)–2(d): u′2/2K is the
fraction of energy in u′, Au/A is the fraction of turbulence dissipation in u′, and Bu/B is the fraction
of destruction of dissipation in u′. The profiles in Figs. 2(b) and 2(c) fall almost on top of those
extracted from the MKM database.5

Fig. 2(b) shows that u′ has a peak contribution of about 85% to the turbulence kinetic energy in
the near wall region. It is remarkable that the peak contributions of u′ to the turbulence dissipation
and to the destruction of turbulence dissipation are not smaller, but still about 85% (Figs. 2(c) and
2(d), respectively). However, in the logarithmic and central regions (y+ > 100), (Au, Av, Aw) is
more isotropic than the three velocity variances, and (Bu, Bv, Bw) is even more isotropic. Thus
at increasingly fine scale the turbulence shows more isotropic behavior, which is in line with the
Kolmogorov theory. The isotropy will be further discussed in Subsection IV B.

In Figs. 3(a) and 3(c) the nine distinct contributions to the turbulence dissipation are shown,
expressed as the ratios Aij/A. In the near-wall region (y+ < 20), the contribution due to the normal
derivative of the streamwise velocity, u′

y , is clearly larger than the contributions from the other
first-order velocity derivatives. From these other derivatives, u′

z and w′
y give the largest contribution

FIG. 3. Variances of first-order velocity derivatives (scaled with A) and first-order pressure derivatives (scaled with Ap).
(a) Streamwise velocity gradient, (b) normal velocity gradient, (c) spanwise velocity gradient, and (d) pressure gradient;
(a)–(d) x-derivative (solid), y-derivative (dashed), and z-derivative (dashed-dotted). The theoretical isotropic values are
denoted by symbols: (a)–(c) 1/15 (circle) and 2/15 (square); (d) 1/3 (circle). See also Table III (Appendix).
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FIG. 4. Variances of second-order velocity derivatives (scaled with B) and second-order pressure derivatives (scaled with
Bp). (a) Streamwise velocity derivatives, (b) normal velocity derivatives, (c) spanwise velocity derivatives, and (d) pressure
derivatives; (a)–(d) xx-derivative (thick solid), yy-derivative (thick dashed), zz-derivative (thick dashed-dotted), xy-derivative
(thin solid), xz-derivative (thin dashed), and yz-derivative (thin dashed-dotted). The theoretical isotropic values are denoted
by symbols: (a)–(c) 3/105 (circle), 9/105 (square), and 2/105 (triangle); (d) 3/15 (circle) and 1/15 (square). See also Table IV
(Appendix).

to the dissipation in the near wall region. The reason of the dominant contribution of u′
y

2 to the
dissipation in the near-wall region will be analyzed in Sec. VI, where the budgets of the velocity
derivative variances will be shown. The profiles of pressure gradient variances show that p′

y is small
compared to p′

x and p′
z in the viscous sublayer, probably related to the fact that p′

y appears in the v′

equation (near the wall v′ is smaller than u′ and w′, because continuity implies v′
y = 0 at the wall).

Furthermore, in the logarithmic and central regions, the relative variance of the x-derivative of the
pressure converges from above to its isotropic value, in contrast to the relative variances of the three
x-derivatives of the velocity components, which tend to be smaller than the corresponding isotropic
values.

Figure 3 shows that for y+ > 100 individual derivatives seem to behave more or less isotropically,
although Table III in the Appendix shows that at the center the contribution of each first-order
derivative to A is not very close to isotropic theory. The maximum relative deviation from isotropic
ratios occurs for u′

y ; at the center, A12/A is 26.4% larger than its isotropic value. Since approximately
the same number was found in Case 2 (25.6%), the deviation is not caused by statistical errors.

In Figs. 4(a)–4(c) the 24 second-order derivatives of the primary variable are shown (scaled with
B). The largest peak is found for u′

yy at y+ ≈ 6. Overall u′
yy is dominant among the second-order

velocity derivatives in the near wall region, but surprisingly not very close to the wall; at the wall the
largest contribution is not due to u′

yy but to w′
yy . It is remarked that the so-called cross-derivatives of

velocity (e.g., u′
xy) count twice in A, and likewise so-called cross-derivatives of the pressure count

twice in B. The centerline values are compared with the isotropic values derived in Sec. II and
denoted by symbols in Fig. 4. Like the first-order derivatives, the second-order derivatives appear to
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TABLE II. Centerline anisotropy coefficients of the contributions of the three velocity components to 2K, A, B, G, and Z
(turbulent transport of K).

i 3u′
i
2
/2K − 1 3Aui /A − 1 3Bui /B − 1 3Gui /G − 1 3(Zi /Z − 1)

1 0.338 0.106 0.066 0.187 0.601
2 − 0.160 − 0.071 − 0.071 − 0.157 − 0.100
3 − 0.178 − 0.035 0.005 − 0.030 − 0.501

behave more or less isotropically for y+ > 100. Table IV in the Appendix shows the comparison at
the centerline in detail. For the second-order derivatives the largest relative deviation is due to u′

yy ;
B122/B is 24.9% larger than its isotropic value (24.4% in Case 2). Although second-order derivatives
correspond to smaller scales than first-order derivatives, the maximum deviation is not much smaller,
probably because there are twice as many second-order than first-order derivatives.

B. Anisotropy coefficients

Investigations of isotropy of small scales in turbulent channel flow were hitherto based on
the anisotropy tensor of the vorticity.2, 24 In this context the Corrsin length scale is important,
Lc = (ε/u3

y)1/2, which can be regarded as an upper limit for the isotropy of small scales.2, 45, 46 The
underlying idea is that mean shear (uy) is important for a structure if its reciprocal is smaller than the
characteristic time scale of the structure. The mean shear normalized by the integral time scale 2K/ε
is defined by ū∗

y = 2K uy/ε (mean shear dominates if ū∗
y � 1). This quantity can also be written

as ū∗
y = 2(L/Lc)2/3,2 where the integral length scale is defined by L = K3/2/ε.41 In the logarithmic

layer, the shear parameter u∗
y attains an approximately constant value,2, 46 approximately 7 in the

present case, which corresponds to L ≈ 6.5Lc (see above).
Instead of investigating the isotropy of the three vorticity variances, the three diagonal compo-

nents of the dissipation were plotted in Fig. 1. This choice has the advantage that the role of each
individual velocity component remains clearly visible. In this subsection we will first discuss the
anisotropic behavior shown in Fig. 1 in more detail. Second, we will perform a length scale analysis,
in which statistics of individual first and second-order velocity derivatives will play an important
role.

Centerline anisotropy coefficients of 5 types of variables are listed in Table II (0 is isotropic,

theoretical extremes are −1 and 2). The variable Zi = (u′
i
2u2),2 represents the turbulent transport

term in the u′
i

2
equation, and Z = Z1 + Z2 + Z3. Like Fig. 2, Table II shows that at the centerline

the destruction split per velocity component is slightly more isotropic than the dissipation split per
velocity component, while the latter is clearly more isotropic than the velocity variances. For all
5 variables the maximum anisotropy occurs in the u-quantity, also if we compare with absolute
values of the anisotropies of v- and w-quantities. With one exception, the anisotropies of v- and
w-quantities shown in Table II are all negative. The implication is that at this Reynolds number
both large- and fine-scale contributions to the dynamics of the u-velocity component are still more
important than the corresponding contributions to the dynamics of either the v- or the w-velocity
component.

We will discuss the details of Table II in combination with Figs. 5 and 6. In Fig. 5 the Reynolds
dependency of most anisotropy coefficients in Table II is illustrated, while the dependence on y+

of anisotropy coefficients for the u-quantities is shown in Fig. 6. In these figures, we do not only
show our own results, but also results extracted from internet databases of spectral channel flow
simulations by others.5, 7, 10, 18

First we discuss the anisotropy coefficients of the velocity variances in more detail. Figs. 5(a) and
6(a) suggest that the anisotropy of the velocity variances does not converge to zero with increasing
Reτ , at least not monotonically. The latter figure shows that at Reτ = 4200, the anisotropy of u′2
has developed a second peak around y+ ≈ 600 (the first peak occurs in the buffer layer). This is
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FIG. 5. Centerline anisotropies 3u′
i
2
/2K − 1 (a) and 3Aui /A − 1 (b) as functions of Reτ , for i = 1 (solid), i = 2 (dashed),

and i = 3 (dotted). The squares denote the present Case 3 (Reτ = 180) and Case 1 (Reτ = 590), the circles databases of
Moser, Kim, and Mansour (180, 395, 590),5 and the triangles databases of del Álamo and Jiménez (180, 550),7 Hoyas and
Jiménez (950, 2000),9, 10 and Lozano-Durán and Jiménez (4200).18

remarkable in view of the open question whether the profile of the streamwise turbulence intensity
develops a second peak at very high Reynolds number.1, 18 The peak in the u-anisotropy observed at
Reτ = 4200 is perhaps the predecessor of a second peak in the streamwise turbulence intensity at
much higher Reynolds number.

In view of the above discussion on the effect of mean shear on the upper limit of isotropic scales
(the Corrsin length scale Lc), the question arises how the strong centerline anisotropic behavior
of velocity variances can be explained. It cannot be caused by local mean shear, since uy is zero
there (Lc → ∞). We hypothesize that the large-scale anisotropy in the central region is caused by
turbulent transport (turbulent diffusion); anisotropic structures are transported from the logarithmic
layer, where mean shear is still dominant, to the central region, where mean shear is small. The

important terms in the Reynolds stress budgets for u′
i
2 away from the wall are production, pressure

strain, turbulent transport, and dissipation. Since the production is proportional to ui,2, which is only
nonzero if i = 1, the anisotropy of the production term is maximum (except at the center, where
it is not defined). Since production is small in the central region and pressure strain only acts to
redistribute the energy between the components, turbulent transport becomes the dominant source of
turbulence kinetic energy. The anisotropy coefficients of the three turbulent transport contributions

FIG. 6. (a) Anisotropy 3u′2/2K − 1. (b) Anisotropy 3Au/A − 1 (solid), 3Bu/B − 1 (dashed), and 3Gu/G − 1 divided by 2
(dashed-dotted, 2 coinciding curves, from Cases 1 and 2). (a) and (b) The thin solid lines are based on the databases of Hoyas
and Jiménez (Reτ = 950, 2000)9, 10 and Lozano-Durán and Jiménez (Reτ = 4200).18 Logarithmic scaling of the y+ axis is
used.
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have been included in Table II. The maximum of the three absolute values is larger than the maximum
of the absolute anisotropy coefficients of the velocity variances. Both maxima are attained by the
streamwise component.

Next, we discuss the anisotropy of fine scales per velocity component, as shown in Table II
and Figs. 5 and 6. The figures show that the deviation from isotropy of the dissipation per velocity
component (Au, Av , and Aw) in the logarithmic and central regions becomes smaller with increasing
Reynolds number. The effect of Reτ on the dissipation anisotropy is relatively small for y+ < 200
(including the undisplayed region y+ < 100), but for larger y+, the anisotropy shows a stronger
dependence on Reτ . The anisotropy of the dissipation in the central region seems to converge to zero
in the limit Reτ → ∞. An interesting feature of Fig. 5(b) is that the ratio of the anisotropy of Av

and Aw does not show a convergence to one, unlike the ratio of the anisotropy of v′2 and w′2 (see
Fig. 5(a)).

In addition, Table II and Fig. 6(b) show the anisotropy of the components of fine-scale quan-
tities B and G. Since second-order derivatives peak at smaller scale than first-order derivatives,
(Bu, Bv, Bw) are less anisotropic than (Au, Av, Aw) at the centerline (Table II), and in fact for y+ >

150 at Reτ = 590 (Fig. 6(b)). For 150 < y+ < 300 the anisotropy of Bu at Reτ = 590 is approximately
as low as the anisotropy of Au at Reτ = 950. In contrast to the destruction term (2νB), the fine-scale
generation term G, which consists out of triple correlations of the fluctuations of first-order velocity
derivatives, is less isotropic than the dissipation (Table II). This is the case in the logarithmic and
central regions, see Fig. 6(b) (in which the anisotropy of Gu divided by 2 is shown). This may be
surprising, since why would G, which is more nonlinear than A, be more anisotropic? The anisotropy
of Gu approximately coincides for the two averaging times (Cases 1 and 2 in Fig. 6), thus the results
are not a statistical error. Apparently, the stronger nonlinearity does not necessarily mean more
randomness; the nonlinearity in G represents vortex stretching by small scales, and perhaps vortex
stretching is relatively sensitive to the larger anisotropic scales or it includes backscatter. Although
the Reynolds dependency is not explicitly shown for B and G, we found for each of the three small
scale quantities A, B, and G that the anisotropy at Reτ = 590 is smaller than at Reτ = 180. Although
G is apparently more anisotropic than A, we expect that, in the central region, the anisotropy of G
also converges to zero in the limit Reτ → ∞.

C. Length scales

Spatial derivatives can be used to define length scales, for example, the well-known Taylor
microscale, which is based on the longitudinal velocity derivative. In anisotropic flows there are
three choices for the direction; therefore, a logical definition for longitudinal Taylor microscales

is λi = (u′
i
2
/u′

i,i
2)1/2 for i = 1, 2, and 3. Since u′

1,1
2 = A/15 and u′

1
2 = 2K/3 in isotropic turbu-

lence, a logical definition for a single Taylor microscale is λ = (10K/A)1/2, which is a well-known

expression.41 Similarly, we can define Taylor Reynolds numbers Rei = (u′
i
2

1/2
λi )/ν and an overall

Taylor Reynolds number Reλ = ((2K/3)1/2λ)/ν. These length scales and Reynolds numbers are shown
in Figs. 7(a) and 7(b). Reλ increases from zero at the wall to its maximum 62 at y+ = 250 and then
slowly decreases to 45 at the centerline. However, the directional Taylor Reynolds number Re1 can
be much larger, it peaks around 170 at y+ ≈ 10.

In addition, the Corrsin length scale Lc, an upper limit for isotropic small scales,2 and integral
length scale L = K3/2/ε are shown in Fig. 7 (L has been divided by 6.5; for Reτ = 590, the region
where L ≈ 6.5Lc represents the region where ū∗

y is approximately constant). According to Fig. 7(a),
Lc and λ are of the same order for y+ between 100 and 400 (roughly the logarithmic region for Reτ

= 590). The large variation between the directional Taylor length scales (λ1, λ2 and λ3) suggests
that the flow contains anisotropic scales of the order Lc. The Corrsin scale approaches infinity at the
channel center Lc, due to zero mean shear. As explained above, the anisotropy at the center, which
cannot be produced by the local mean shear, is most likely caused by turbulent transport.

In the following we consider the isotropy of scales much smaller than λ and Lc. The Kolmogorov
scale η = (ν3/ε)1/4 is the standard length scale of the dissipative range of turbulence. To estimate
the size of fine structures along each a particular direction, we wish to define directional fine
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FIG. 7. (a) Taylor microscales λ1 (solid), λ2 (dashed), λ3 (dashed-dotted), λ (circles), Corrsin length scale Lc (triangles), and
integral length scale of turbulence L divided by 6.5 (squares); (b) Taylor Reynolds numbers, Re1 (solid), Re2 (dashed), Re3

(dashed-dotted), Reλ (circles); (c) length scales μ1 (solid), μ2 (dashed), μ3 (dashed-dotted), μ (circles), and 3.3η (triangles);
and (d) velocity scales c1 (solid), c2 (dashed), c3 (dashed-dotted), and c (circles), and the velocity scale (2K/3)1/2 (divided by
10, triangles). All length scales have been normalized with δν .

scales. However, this is not straightforward. Consider, for example, the length scale definition
μ̃i = (ν3/(ν Aui )), similar to the Kolmogorov scale, but with ε replaced by the dissipation of the ui

variance. The disadvantage of this definition is that μ̃2 → ∞ at the wall. For this reason we define
alternative length scales for fine structures by

μi =
(

u′
i,i

2
/u′

i,i i
2
)1/2

, (35)

and the corresponding overall length scale

μ =
(

(A/15)/(3B/105)
)1/2

=
(

7A/3B
)1/2

. (36)

These length scales are shown in Fig. 7(c). They are much smaller than the Taylor microscales,
which is natural since higher-order derivatives are involved. However, they are still larger than the
Kolmogorov scale η = (ν3/ε)1/4, except μ2 very close to the wall. Away from the wall (y+ > 100)
we observe μi ≈ μ; these small length scales are clearly more isotropic than the Taylor microscales
shown in Fig. 7(a). For the overall length scale μ, we observe η < μ < λ in this region.

The Taylor expansion in y-direction of the velocity fluctuation is u′ = a1y + O(y2) and (due to
vy = 0 at the wall) v′ = a2 y2 + O(y3), where y is the distance to the wall (the expansion of w′ is
similar to the expansion of u′). The coefficients a1 and a2 are functions of x, z, and t with nonzero
variance. It follows that μ1 and μ3 converge to nonzero values in the near wall-limit. However,
substitution of the expansion for v′ in the definition of μ2 yields μ2 = y + O(y2). Therefore, in the
near-wall limit μ2 is equal to the distance to the wall, which is a physical length scale. The result μ2
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≈ y near the wall is also observed in Fig. 7(c) near the origin (note the root scaling of the horizontal
axis).

In fact, the length scales μi and μ are viscous length scales. To support this statement with
theory, we consider the three-dimensional isotropic model spectrum proposed and validated by Pope
(pp. 232–238):41

E(k) = Cε2/3k−5/3 fL (kL) fη(kη), (37)

where E(k) is the kinetic energy in Fourier modes with absolute wavenumber k, and C = 1.5 the
Kolmogorov constant. The non-dimensional functions fL and fη are defined by

fL (kL) =
(

kL/[(kL)2 + cL ]1/2
)11/3

, (38)

fη(kL) = exp
(

− 5.2([(kL)4 + c4
η]1/4 − cη)

)
. (39)

The constants cL and cη are determined by the requirements that the integral of E(k) equals K and
the integral of 2νk2E(k) equals ε.

For high Reynolds number, cL = 6.78 and cη = 0.40.41 Important properties of the functions fL
and fη are fL(kL) → 1 for k → ∞ and fη(kη) → 1 for k → 0. In the limit of high Reynolds number
L/η → ∞. In this limit the invariants 2K, A, and B can be written as

2K = 2
∫ ∞

0
E(k)dk = 2Cε2/3 L2/3

∫ ∞

0
(kL)−5/3 fL (kL)d(kL), (40)

A = 2
∫ ∞

0
k2 E(k)dk = 2Cε2/3η−4/3

∫ ∞

0
(kη)1/3 fη(kη)d(kη), (41)

B = 2
∫ ∞

0
k4 E(k)dk = 2Cε2/3η−10/3

∫ ∞

0
(kη)7/3 fη(kη)d(kη). (42)

The last integral in Eq. (40) is denoted by IK, the last integral in Eq. (41) by IA, and the last integral
in Eq. (42) by IB. We evaluated these integrals numerically and found IK = 0.667, IA = 0.332, and
IB = 0.0707. This implies

λ = (10K/A)1/2 = (5IK /IA)1/2L1/3η2/3 = 3.2L1/3η2/3, (43)

μ = (7A/3B)1/2 = (7IA/3IB)1/2η = 3.3η. (44)

This result does not only confirm the common knowledge that the Taylor microscale λ is an inertial
length scale (in between the integral length scale L and dissipative length scale η), but it also shows
that the small length scale μ is essentially a viscous length scale, since it is proportional to η. The
relationship μ = 3.3η has been added to Fig. 4(c), and it appears to be a good approximation of μ

in channel flow at Reτ = 590 for y+ > 100. We searched the literature for similar length scales and
encountered the definition η2

p = p′
,α p′

,α/(�p′)2 in Ishihara et al.,36 with reference to the theory of
Yakhot.48 They found ηp = 3.0η for high Reynolds number.

As discussed in Sec. III both first- and second-order derivatives peak in the viscous range.
Therefore, the length scales solely based on first- and second-order derivatives are viscous length
scales. Thus to define a viscous length scale it is not mandatory to include explicitly the viscosity ν

in the definition. That length scales several times larger than η are still viscous is in line with DNS
data of isotropic turbulence, in which η was found to lie deep into the viscous range.47

The question arises whether the small-scale velocities corresponding to the length scales based
on first- and second-order velocity derivatives are indeed more isotropic than the velocity fluctuations.
We therefore define small-scale velocities,

ci = u′
i,i

2
/
(

u′
i,i i

2
)1/2

, (45)
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and an overall small-scale velocity,

c = (A/15)/(3B/105)1/2 = (7A2/45B)1/2. (46)

These quantities are shown in Fig. 7(d) and compared with the much larger velocity fluctuation
(2K/3)1/2, which has been divided by 10 to fit into the figure. Since all first- and second-order
velocity derivatives play a role in the definition of c, c is nonzero at the wall, unlike c1, c2, and c3.
The behavior of the small-scale velocities ci in the logarithmic and central regions (y+ > 100) is
more or less isotropic, in contrast to the significant anisotropy of the velocity fluctuations u′

i in these
regions.

V. HIGHER ORDER MOMENTS AND PDFS

Higher order moments and pdfs of first-order velocity and pressure derivatives have been used
to characterize the small scales in isotropic turbulence.31–36 In this section we apply these tools to the
spatial velocity and pressure derivatives in turbulent channel flow. It is the first time that higher order
moments and pdfs of derivatives are shown for turbulent channel flow, with the exception of the
diagonal derivative skewnesses (S(u′

x ), S(v′
y), and S(w′

z)), which for Reτ = 180 were also discussed
in our recent paper.15 Skewness and flatness profiles of non-derivatives (velocity and pressure) in
channel flow have been shown before,3 and they can also be found in the MKM database on internet.5

Normalized higher order moments, such as skewness and flatness, are a tool to quantify the
non-Gaussianity and intermittency of a quantity. The skewness of a Gaussian variable is zero and its
flatness equals 3. Non-zero skewness measures the asymmetry of a variable with respect to its mean
value. If the variable has a flatness larger than 3, it is called intermittent. A strongly intermittent
signal looks dormant most of the time, interrupted with short periods of activity.

A. Skewness profiles

The skewness of velocity gradients is related to the generation of small scales via G, since the
latter also contains triple correlations of the first-order velocity derivatives. Three terms in G can be
directly expressed into a skewness. These are

Giii = −2u′
i,i

3 = −2S(u′
i,i )u

′
i,i

2
. (47)

In isotropic turbulence an exact relation between G and the skewness of u′
x exists,39 see Eq. (30).

In isotropic turbulence, S(u′
x ) = S(u′

y) = S(u′
z) ≈ −0.5,29 or more precisely −0.32Re0.11

λ ,36 which
equals −0.49 for Reλ = 45 (centerline of our channel). The values of these three skewnesses
at the channel centerline show some deviation from −0.49: S(u′

x ) = −0.45, S(v′
y) = −0.71, and

S(w′
z) = −0.42.
The skewness profiles of the first-order derivatives are shown in Fig. 8. To illustrate the effect

of Reynolds number, some profiles from Case 3 have been included (one example in each subplot).
The trends are similar for both Reynolds numbers. Quantitatively, some values are larger for Reτ

= 590, others are somewhat smaller. The skewness of the streamwise longitudinal derivative, S(u′
x )

displays at y+ ≈ 30 a strong minimum of approximately −1.5 for Reτ = 180 and −1.4 for Reτ =
590. This minimum is caused by local coherent structures.15 Strongly negative peaks of skewness
can be observed for v′

x and p′
y in the viscous sublayer. These peaks become even stronger with

increasing Reynolds number (at least up to Reτ = 590).
The important derivative u′

y is strongly positively skewed in almost the entire channel half (large
positive values of u′

y are more likely than large negative values of u′
y). S(u′

y) is only negligible at
the center, where it should be zero due to statistical symmetry. In the other channel half, where the
mean uy is negative, S(u′

y) is also negative. In addition, S(p′
y) and S(p′

x ), which like S(u′
y) are zero

in isotropic turbulence, show significant deviation from zero almost everywhere. The significant
skewnesses of u′

y , p′
x , and p′

y for y+ > 100 are surprising, since the variances of these fine-scale
quantities appear to be more or less isotropic in the logarithmic and central regions (see Sec. IV).
Future research may shed light on the behavior of these quantities at high Reynolds number.
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FIG. 8. Skewness of (a) gradient of u′, (b) gradient of v′, (c) gradient of v′, and (d) gradient of p′. (a)–(d) x-derivative (solid),
y-derivative (dashed), and z-derivative (dashed-dotted). S(u′) (a), S(v′) (b), S(w′), and S(p′) are denoted by circles. Results
from Case 3 (Reτ = 180) are represented by shorter thin lines (only for u′

x , v′
x , w′

z , and p′
y ).

B. Flatness profiles

The flatness profiles of the first-order derivatives (and primary variables) are shown in
Fig. 9 (square-root scaling is applied to both axes of each subplot). At most distances from the
wall the derivative flatnesses are larger than the Gaussian value, which means that the derivatives are
intermittent almost everywhere. Some of these flatnesses attain very large values, in particular in the
near wall region. In addition, the derivative of a variable is observed to be almost everywhere more
intermittent than the variable itself, which is in line with observations for isotropic turbulence.22 The
large flatness of v′ at the wall, which has been discussed by various authors, is related to coherent
structures.3, 14, 15 Whereas F(v′) is high at the wall, F(v′

x ) and F(v′
z) are even higher at the wall .

However, the flatness of v′
y close to the wall is approximately the same as the flatness of v′. This

can be understood if we realize that near the wall vy is approximately equal to v divided by twice
the distance to the wall (which follows from the Taylor expansion of v). A few results of Reτ = 180
have been included, F(u′

x ) and F(p′
y). In the viscous sublayer, derivatives appear to be significantly

more intermittent at Reτ = 590 than at Reτ = 180, but otherwise the intermittencies of the two cases
look quite similar to each other.

In Fig. 10, the flatness values of the velocity in the logarithmic and central regions are shown.
The overall Taylor Reynolds number Reλ (Fig. 7) equals 52 at y+ = 100, increases to the maximum
62 at y+ = 250 and then drops to 45 at y+ = 590. The correlation produced by Ishihara et al.36 for
the longitudinal velocity derivative in isotropic turbulence, F(u′

x ) = 1.14Re0.34
λ , and other results

from literature on isotropic turbulence around Reλ = 62 are denoted by solid symbols at y+ = 250.
Fig. 10(a) shows that, like in isotropic turbulence, the flatness of an off-diagonal components

of the velocity gradient is much larger than the flatness of a diagonal component (the flatness is
largest for u′

y and v′
x , the two derivatives of the spanwise vorticity). However, both diagonal and

off-diagonal flatnesses are much larger than in isotropic turbulence at comparable Reλ. Thus, the
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FIG. 9. Flatness profiles of (a) gradient of u′, (b) gradient of v′, (c) gradient of w′, and (d) gradient of p′. (a)–(d) x-derivative
(solid), y-derivative (dashed), and z-derivative (dashed-dotted). F(u′) (a), F(v′) (b), F(w′), and F(p′) are denoted by circles.
Results from Case 3 (Reτ = 180) are represented by the thin lines (only for u′

x and p′
y ).

striking feature of this figure is that the fine-scale turbulence appears to be much more intermittent
than in isotropic turbulence. The same applies to the pressure gradient. For the present channel, the
smallest of the three centerline flatnesses of the pressure gradient (F(p′

z)) is equal to 27, much larger
than in isotropic turbulence, for which 8.1 for Reλ = 38 and 14.8 for Reλ = 90 were reported.34

FIG. 10. Flatnesses in logarithmic and central regions (linear scaling of y+ axis). (a) F(u′
x ) (solid, open circle), F(u′

y )
(solid, open square), F(u′

z) (solid, open triangle), F(v′
x ) (dashed, open circle), F(v′

y ) (dashed, open square), F(v′
z) (dashed,

open triangle), F(w′
x ) (dashed-dotted, open circle), F(w′

y) (dashed-dotted, open square), and F(w′
z) (dashed-dotted, open

triangle). Thick solid line: the correlation of F(u′
x ) in isotropic turbulence, Ishihara et al.36 (b) F(u′) (solid), F(v′) (dashed),

F(w′) (dashed-dotted), F(p′) (dotted). Thick lines: present results, including one result of Case 2 (open squares). Almost
coinciding curves for F(p′) represent Case 2. Thin lines: Moser, Kim, and Mansour database.5 (a) and (b) Results from DNS
of isotropic turbulence: F(u′

x ) (solid square), F(u′
y ) (solid triangle), F(u′) (solid diamond) at Reλ = 61 by Jiménez et al.,32

and F(p′) (solid circle) at Reλ = 70 by Cao et al.35
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FIG. 11. Examples of probability density functions of the derivatives u′
x (a), u′

y (b), u′
z (c), and �p′ (d). (a)–(d) pdf at

location y+ = 1 (thick solid), y+ = 30 (thick dashed), and y+ = 590 (thick dash-dotted). Thin lines represent the Gaussian
probability density f1/2, the Laplace probability density f1, and probability density f2 (from narrow to wide tails).

The intermittencies of the velocity and pressure are shown in Fig. 10(b). Like in isotropic
turbulence the pressure in this region is more intermittent than the three velocity components. The
flatnesses of v′ and w′ appear to be somewhat larger than in isotropic turbulence. The flatnesses of
u′ and p′ at y+ = 250 are close to the isotropic data, but surprisingly, the pressure flatness shows a
strong increase in the central region. Velocity and pressure flatness profiles from the MKM database5

on internet confirm these trends, despite large oscillations in F(p′). The statistical convergence of
F(p′) in the central region is relatively slow. The maximum statistical error in our F(p′) is estimated
to be about 0.5 (difference between Case 1 and Case 2), which is larger than the maximum of all
absolute statistical errors of the derivative flatness profiles shown in Fig. 10(a) (about 0.2).

C. Probability density functions

The relatively large derivative skewnesses and flatnesses make us curious to the shape of the
pdfs of spatial derivatives. The pdf of the four primary variables, the 12 first-order derivatives and
the four Laplacians have been computed at 20 different locations of y+. As an illustration Fig. 11
shows the probability density of 4 quantities at three different locations y+. The four quantities are
u′

x , u′
y , u′

z , and �p′.
As a reference for the shape three examples of the following family of symmetric pdfs are added

as thin lines,

fn(ξ ) = b exp(−a|ξ |1/n), (48)

where n > 0, while the coefficients a and b are determined by the constraints that the standard
deviation and the integral of fn are both 1. Equation (48) is equivalent to the stretched exponential
form in Cao et al.35 The case n = 1/2 is just the standard normal distribution N(0, 1), which has a
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FIG. 12. (a) �p′ at y+ = 1 and z = 0 (dashed) and z = Lz/2 (solid), extracted from a snapshot and scaled with the maximum
of |�p′| in the plane y+ = 1. (b) Rms-profile of �p (circles) compared to the rms-profiles of its components pxx (solid), pyy

(dashed), and pzz (dashed-dotted).

flatness of 3. The corresponding curve is parabolic in the plots, because of the logarithmic scaling
of the vertical axis. The case n = 1 is known as the two-sided exponential distribution or Laplace
distribution. It has a flatness of 6 and the corresponding curve in the logarithmic plots consists of two
straight lines in tent-shape. With increasing n, the flatness F increases, the tails of the probability
density function become more pronounced, while the peak at ξ = 0 becomes sharper and the central
region more narrow. For positive integer values of n we derived a2n = (3n − 1)!/(n − 1)!, b =
an/2n/(n − 1)!, and F = (5n − 1)!(n − 1)!/((3n − 1)!)2. Thus the flatness equals 6, 25.2, 107.25,
458.1 for n = 1, 2, 3, 4, respectively.

It is clear that the pdfs shown in Fig. 11 are strongly non-Gaussian. Some tails show exponential
behavior (n ≈ 1, for example, for u′

z at y+ = 30), but there are also tails that are better approximated
by n = 2 (for example, for u′

x at y+ = 1). The positive skewness of the important u′
y can clearly be

observed from the curves in Fig. 11(b) at y+ = 1 and y+ = 30.
The pdf of the Laplacian of the pressure is shown because among the computed pdfs this one

takes the most unusual shapes. This quantity is strongly intermittent, and at each of the three locations
one of the two tails appears to be flatter than the tails of f2. Indeed the flatness of the Laplacian was
found to be typically of the order of 100 in the logarithmic and central regions. Close to the wall, the
flatness of �p′ becomes much larger and is accompanied with large negative skewness of �p′. The
latter is illustrated by the very skewed shape of the pdf of �p′ at y+ = 1. As a further illustration
�p′ on two lines in the plane y+ = 1 extracted from a snapshot is shown in Fig. 12(a). The variable
is indeed very intermittent. Also the variable is clearly strongly skewed towards negative values; the
absolute values of the minima are much larger than the absolute values of the maxima. This implies
that the minima are more spiky than the maxima, since the mean of �p′ is zero by definition. Thus
in the plane y+ = 1 the regions with (small) positive �p′ cover a larger area than the regions with
(large) negative �p′.

The remarkable behavior of �p′ shown in Fig. 12(a) can be explained by the presence of the
wall. In incompressible channel flow �p = −uα, βuβ, α , and since u = v = w = vy = 0 at the wall,
�p = 0 at the wall. Thus the no-slip condition and the continuity constraint enforce �p = 0 at the
wall. Fig. 12(b) shows that, except very close to the wall, Rms(�p) is larger than the Rms(pxx),
Rms(pyy), and Rms(pzz). This is expected from a quantity that is defined as the sum of pxx, pyy and
pzz. However, near the wall pxx, pyy, and pzz cancel in order to comply with the implicit constraint
�p = 0 at the wall. At the location considered, y+ = 1, the value of Rms(p) is not zero yet, but has
dropped below the Rms of pxx, pyy, and pzz.

VI. BUDGETS OF FINE SCALES

In literature the budget of dissipation rate for Reτ = 180,25 and budgets of the vorticity variances
up to Reτ = 395 can be found.27, 28 In this section we will consider the budget of A (equivalent to
the budget of the dissipation rate) for higher Reτ (590), and we will present budgets of individual
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FIG. 13. (a) Terms in the budget of A divided by the destruction term 2νB: M(1) (thin solid), M(2) + M(3) (thin dashed),
G (thick solid), T(t) (thick dashed-dotted), T (p) + T (v). (b) Generalized skewness SG (solid) and isotropic estimate −0.5
(dashed)29.

velocity gradient variances for the first time. Unlike the budgets of dissipation rate and vorticity
variances, the budgets of the individual derivative variances show the role of the pressure gradient
in the redistribution of fine scales (via �ij) and give more insight why the role of u′

y is different
from the role of the other derivatives. In addition we will consider the distinct contributions to the
small-scale generation term G in the dissipation rate equation.

A. Dissipation rate budget

The budget of the transport equation for A is shown in Fig. 13(a), scaled with the absolute
value of the destruction term (2νB). Thus the destruction term is not shown, since B was shown in
Fig. 2 and after this scaling, it is simply equal to −1. Since the term M(3) is the smallest one of
the interactions with the mean flow (the M-terms in the budget), the sum of M(2) + M(3) is shown.
Likewise, since the pressure transport term T(p) is the smallest of all terms, the sum of pressure and
viscous transport is shown.

We make the following observations. Overall, the most important terms are the generation term
G and destruction term −2νB. Second, not only G, also the production terms M(1) and M(2) are
important, although M(2) starts to become relevant somewhat further away from the wall. At the
wall the viscous transport term T (v) is very large as expected, but Mansour et al.25 comment that
this is also a somewhat artificial consequence of the common split of the total viscous effects into
a diffusion term T (v) and a sink term −2νB. Third, in the near wall region the production by mean
shear M(1) is almost the same as G. Fourth, the profile of G/2νB is nearly flat for 225 < y+ < 590,
where the generation G balances about 87% of the destruction. Fifth, at the center of the channel, the
remaining 13% is almost entirely caused by turbulence transport. Sixth, slightly out of the center,
not only turbulence transport, but also the mean production terms contribute to the remaining 13%.
The first three observations, which apply to the buffer layer, were also made by Mansour et al.25

The latter three observations are new, since in the dissipation rate budget analysis by Mansour et al.
only the region y+ < 60 was considered.

Similar to the definition of an overall Taylor microscale based on K and A (see Sec. IV) it is
possible to define a generalized skewness based on G and A by

SG = (−1

2
G/35)/(A/15)3/2 ≈ −1.66G/A3/2, (49)

such that in isotropic turbulence SG = S(u′
x ) = S(v′

y) = S(w′
z). In contrast to the distinct S(u′

x ),
S(v′

y), and S(w′
z) shown in Fig. 8(a), the generalized skewness shown in Fig. 13(b) is reasonably

close to the isotropic empirical value of −0.5 for y+ > 30, which includes the logarithmic and central
regions.
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FIG. 14. (a)–(i) Terms in the budget of Aij divided by the destruction term 2νB: M (1)
i j (thin solid), M (2)

i j + M (3)
i j (thin dashed),

Gij (thick solid), �ij (thick dashed), −2νBij (thick dashed-dotted), and T (t)
i j + T (p)

i j + T (v)
i j (thin dashed-dotted). Arrangement

of subplots: from top to bottom i = 1, 2, 3, and from left to right j = 1, 2, 3.

B. Budgets of variances of derivatives

An overview of the budgets of the nine variances of the first-order velocity derivatives is shown
in Fig. 14. In contrast to the zero �αα in the budget of A, the pressure term �ij in the budget of Aij

is nonzero. All terms in the individual budgets have been scaled with 2νB. The sum of the curves
reduces to the corresponding scaled terms of the total budget shown in Fig. 13(a).

We make the following observations. First, as implied by, its definition, M (1)
i j is only nonzero

for i = 1 (the equations for the variances of the gradient of u). More unexpectedly, this term is much
smaller for the x-derivative (j = 1) than for the y- and z-derivatives (j = 2 and j = 3). Second, the
other production by mean effects, M (2)

i j contributes to the three y-derivatives only (j = 2). The term

M (3)
i j , not explicitly shown, is only nonzero in the budget of the uy variance (i = 1 and j = 2); the

quantity is typically smaller than M (2)
12 , but it has an overall positive contribution to the generation of

uy variance. Third, the terms �ij show that the pressure redistributes dissipation from the derivatives
of u to the derivatives of v and w, since the term is clearly negative for i = 1, and positive for i = 2
and i = 3. However, the budget of wy variance is an exception: �32 is small and tends to be negative
rather than positive (at least at the wall). Fourth, the strongest overall contribution to the destruction
terms is due to destruction of uy variance, although at the wall itself the destruction of wy variance
is stronger. This is in line with the discussion on the second-order velocity derivatives in Sec. IV.

The overall largest contribution to production of turbulence dissipation appears to be due to the
generation term G12, which occurs in the perhaps most interesting budget, namely, the one of A12

(variance of uy). One of the reasons that A12 is relatively important for the turbulence dissipation is
that this is the only component of Aij for which the four production terms, M(1), M(2), M(3), G, are all
active (and generally positive). For the other variances only one or two of the four production terms
are nonzero.
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FIG. 15. (a)–(i) The contributions Gijk to the fine-scale generation term G (scaled with G). Lines: k = 1 (solid), k = 2
(dashed), and k = 3 (dashed-dotted). The theoretical isotropic values 6/105, 1

2 /105, and 4/105 are denoted by symbols for k
= 1 (circle), k = 2 (square), and k = 3 (triangle). Arrangement of subplots: from top to bottom i = 1, 2, 3, and from left to
right 1, 2, 3. See also Table V (Appendix).

C. Generation of dissipation

Since G is the most important term for generation of dissipation throughout across the entire
channel and is the only production term that is also nonzero in isotropic turbulence, the entire
composition of G is shown in Fig. 15, all 27 components, 3 for each Gij, see also Table V. Compared
to the behavior of the derivative tensors Aij and Bijk the behavior of Gijk is clearly less isotropic,
indicating that larger scales are probably involved.

Comparing the magnitude of the relative contributions to G in the region very close to the wall,
the contribution of G122 is the largest one, followed by the contribution of G123. Both contributions
appear in the budget of the uy variance. It is remarked that the strong anisotropy of G122 also persists
at the centerline (at least for Reτ = 590), since of all Gijk/G, G122/G shows the largest deviation from
isotropic theory (see Appendix, Table V).

In order to explain the near-wall behavior, a typical snapshot of the y+ = 1 plane has been
investigated. We searched for the maximum of −2u′

1,2u′
2,2u′

1,2 = −2u′
y

2
v′

y in this plane, since the
average of this term is equal to G122. The maximum was attained at x+ ≈ 3300 and z+ ≈ 1245;
this location is called point Y. Although G121 is relatively small around Y, we show contours of
the sum −2u′

y
2(u′

x + v′
y) in Fig. 16(a); the average of this term is G121 + G122. It is remarked that

G121 + G122 can also be written as 2u′
y

2w′
z , because u′

x + v′
y = −w′

z . Fig. 16(a) shows that not only

the maximum of the generation −2u′
y

2(u′
x + v′

y), but also u′
y itself has a local maximum near Y. In

addition Figs. 16(c) and 16(d) show that u′
x ≈ 0 at Y, while v′

y is negative at Y and close to a local
minimum; continuity implies that w′

z is positive at Y.
Thus the picture of fine-scale generation illustrated by Fig. 16 is as follows, in a region of strong

u′
y (locally intense shear layer of streamwise velocity), u′

y is generated by the interaction of u′
y with

the local strain field. The local strain field compresses the shear layer in y-direction v′
y < 0 and
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FIG. 16. Contours of (a) −2u′
y(u′

x + v′
y ), (b) u′

y , (c) u′
x , and (d) v′

y . (a)–(d) A region in the plane y+ = 1 of a snapshot.
Dashed contours represent negative values; solid contours represent positive values. The contour level is 0.2 of the absolute
maximum of the corresponding variable in the plane. The arrows represent the velocity vector (u′, w′) in the plane.

stretches the shear layer in the z-direction w′
z > 0. This leads to generation of uy variance through

G121 + G122 (it has been verified that G123 is also positive at Y, but smaller than G121 + G122). Since
the spanwise vorticity fluctuation is more or less equal to −u′

y at Y, the shear layer stretching is
also stretching of spanwise vorticity. Thus this mechanism of fine-scale generation is likely to be
the same as the stretching of spanwise vorticity fluctuation due to impingement of fluid from outer
layers on the wall (splatting motion induced by streamwise vorticity).27, 49 At the same location not
only u′

y > 0, but also uy > 0. As a consequence, −2uyu′
y(u′

x + v′
y) > 0 at point Y, which means

that this region also contributes to the production term M(1).
Finally, we will illustrate the shear layer stretching by a simple analytical solution of the

Navier-Stokes equations in an infinite domain. We define

u(x, y, z, t) = yeζ t , v(x, y, z, t) = −ζ y, w(x, y, z, t) = ζ z, (50)

p(x, y, z, t) = 1

2
ζ (y2 − z2). (51)

By substitution this solution is easily verified as an exact solution of the incompressible Navier-
Stokes equations. In fact this solution is a special case of the class of exact shear layer solutions, to
which also Burgers Shear Layer Solution belongs, see Majda and Bertozzi (Section 1.6).37 Above
solution expresses an exponential growth of the shear in u, due to compression of the shear layer
in y-direction. In vortex stretching terms, the spanwise vorticity reduces to −uy and this vorticity is
stretched by wz . The equation of square shear is given by ∂t (u2

y) = −2u2
yvy = 2ζe2ζ t . This solution

illustrates the local behavior of u′
y in the channel flow around point Y of the snapshot shown.

Quantitatively the velocity field is not exactly linear around Y, which means that in contrast to the
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exact solution shown above, viscous effects do play a role in the DNS; they balance or slow down
the local growth of u′

y caused by the generation term.

VII. CONCLUSIONS

Statistical profiles of the first- and second-order spatial derivatives of velocity and pressure were
shown for turbulent channel flow at Reτ = 590. The statistics were extracted from a high-resolution
direct numerical simulation.

To quantify the anisotropic behavior of fine-scale structures, the variances of the derivatives
were compared with the theoretical values for homogeneous isotropic turbulence. The centerline
anisotropy coefficients of the contributions of the three velocity fluctuations to turbulence kinetic
energy, turbulence dissipation, and destruction of turbulence dissipation were compared. The con-
tributions to destruction were found to be more isotropic than the contributions to dissipation, which
on their turn were more isotropic than the contributions to kinetic energy. However, the contribu-
tions to the generation of dissipation (the term with triple correlations of fluctuations of velocity
derivatives) were found to be less isotropic than the contributions to dissipation. The anisotropic
behavior of the velocity fluctuations at the centerline, which may not vanish for high Reynolds
number, was attributed to turbulent transport. Directional viscous length scales μi based on first-
and second-order derivatives were defined. These length scales were shown to be smaller and much
more isotropic than the directional Taylor microscales λi. The high-Reynolds number limit of μi in
isotropic turbulence was derived to be 3.3η. It appeared to be a reasonably accurate approximation
for μi in the logarithmic and central regions of the channel flow at Reτ = 590.

To quantify the non-Gaussian and intermittent behavior of fine-scale structures, higher-order
moments and probability density functions of spatial derivatives were shown. The tails of some of
these probability density functions of derivatives in turbulent channel flow were found to decay more
slowly than both the Gaussian and the exponential distribution. Large skewnesses and flatnesses of
derivatives were observed, in particular in the near wall region. The quantities were compared
with DNS data of isotropic turbulence from literature. In the logarithmic and central regions, the
intermittency (flatness) of each first-order derivative was found to be significantly larger than in
isotropic turbulence at the same Taylor Reynolds number. Also the skewnesses of several derivatives
showed anisotropic behavior in these regions.

Since the nine variances of first-order velocity derivatives are the distinct elements of the
turbulence dissipation, the budgets of these nine variances were shown, together with the budget of
the turbulence dissipation. The comparison of the budgets in the near-wall region indicated that the
normal derivative of the fluctuating streamwise velocity (∂u′/∂y) plays a more important role than
other components of the fluctuating velocity gradient. The small-scale generation term representing
vortex and shear layer stretching caused by turbulent strain was analyzed in more detail; the distinct
triple correlations of first-order velocity derivative fluctuations were compared with each other and
the theoretical values in isotropic turbulence. Although this generation term is less isotropic than
both the destruction term and the turbulence dissipation, a generalized velocity derivative skewness
based on the same generation term is in the logarithmic and central regions quite close to the
empirical value of derivative skewness in isotropic turbulence (−0.5). Finally, a typical mechanism
of small-scale generation near the wall (around y+ = 1) was observed: the intensification of positive
∂u′/∂y by local strain fluctuation (compression in normal and stretching in spanwise direction).

Above conclusions on the statistics of spatial derivatives in turbulent channel flow have several
implications. First, the profiles of the distinct first-order and second-order derivatives and the triple
correlations that generate small scales provide more knowledge of quantities that play important
roles in the long-standing problem whether solutions of the Navier-Stokes equations are regular
(smooth) or not.37 Second, the budget of the turbulence dissipation rate may have implications for
turbulence modeling. Although this budget was shown in previous works,25, 27 this time the Reynolds
number was higher, and for the first time source data of the profiles of a dissipation rate budget have
been included into an internet DNS database of turbulent channel flow. Several physical implications
of the present work are related to the conclusions on isotropy or anisotropy in turbulent channel
flow. The approximately isotropic directional viscous length-scales and the increasing isotropy for
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increasingly fine-scale contributions to the velocity (first- and second-order derivatives summed
per velocity component) in the logarithmic and central regions appear to confirm the Kolmogorov
theory of local isotropy. In view of the confirmations of that theory, the conclusion that, away from
the wall, the intermittencies of spatial derivatives are significantly higher than corresponding values
mentioned in the literature of isotropic turbulence is surprising. Whether this conclusion also holds
for Reτ > 590 is an interesting question for future research.
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APPENDIX: CENTERLINE STATISTICS

Centerline values of various tensors discussed in the text are shown in Tables III–V. They are
compared with the theoretical isotropic values presented in Sec. II. Table III shows the values for
Aij/A and Ap

j /Ap, Table IV for Bijk/B and B p
jk/B p, and Table V for Gijk/G.

TABLE III. Centerline values (C) of the variances of the first-order spatial derivatives of velocity and pressure compared to
the theoretical isotropic values (I).

15A1j/A 15A2j/A 15A3j/A 3Ap
j /Ap

j C I C I C I C I

1 0.956 1 1.785 2 1.712 2 1.108 1
2 2.528 2 1.021 1 2.143 2 1.047 1
3 2.045 2 1.837 2 0.973 1 0.845 1

TABLE IV. Centerline values (C) of the variances of the second-order spatial derivatives of velocity and pressure compared
to the theoretical isotropic values (I).

105B1jk/B 105B2jk/B 105B3jk/B 15B p
jk/B p

j k C I C I C I C I

1 1 2.69 3 7.40 9 7.32 9 3.06 3
2 2 11.24 9 3.36 3 10.84 9 3.25 3
3 3 8.66 9 8.41 9 2.92 3 2.62 3
1 2 2.17 2 1.94 2 3.07 3 1.09 1
1 3 1.84 2 2.64 3 1.76 2 0.94 1
2 3 3.34 3 2.07 2 2.21 2 1.00 1

TABLE V. Centerline values (C) of the distinct contributions Gi jk = −2u′
i, j u

′
k, j u

′
i,k to the fine-scale generation term G,

compared to the theoretical isotropic values (I).

105Gij1/G 105Gij2/G 105Gij3/G
i j C I C I C I

1 1 4.46 6 2.65 1
2 1.25 1

2
1 2 2.98 4 8.47 4 5.88 6
1 3 2.77 4 9.36 6 3.72 4
2 1 1.10 4 5.97 4 4.73 6
2 2 −1.08 1

2 7.78 6 −1.04 1
2

2 3 4.25 6 6.11 4 1.67 4
3 1 2.13 4 6.30 6 3.12 4
3 2 7.06 6 6.88 4 2.38 4
3 3 0.18 1

2 1.65 1
2 4.27 6
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