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Abstract Large-eddy simulations of a vertical turbulent channel fleith 420,000 solid
particles are performed in order to get insight into fundarakaspects of a riser
flow. The question is addressed whether collisions betweeicfes are impor-
tant for the flow statistics. The turbulent channel flow cep@nds to a particle
volume fraction of 0.013 and a mass load ratio of 18, valuasdre relatively
high compared to recent literature on large-eddy simutadifdtwo-phase flows.
In order to simulate this flow, we present a formulation oféhj@ations for com-
pressible flow in a porous medium including particle forcHsese equations are
solved with LES using a Taylor approximation of the dynamibgrid-model.
The results show that due to particle-fluid interactionstibandary layer be-
comes thinner, leading to a higher skin-friction coeffitidmportant effects of
the particle collisions are also observed, on the mean fhaifil@, but even more
on particle properties. The collisions cause a less unifmanticle concentration
and considerably flatten the mean solids velocity profile.
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1. Introduction

A vertical turbulent channel flow with solid particles is sitated in order to
model a section of a riser flow. The turbulent riser is oftenralustrial envi-
ronment for important chemical processes, for example dtalydic cracking
of oil. Detailed simulations may considerably increase wngerstanding of
the physical dynamics of riser flows, which is required beeathe scale-up
of these flows is very complicated. More knowledge about trenftion of
clusters of solid particles in these flows may eventuallyl leamore efficient
industrial processes.



Vertical gas-solid flows have been studied experimentally. (Kulick et al.
1994; Nieuwland 1995) and with simulations. Simulations ba performed
using a two-fluid model in which the solid phase is modelle@ disiid using
continuous variables (e.g., Nieuwland 1995). This apgrassubject to rela-
tively many modelling assumptions. A more accurate apgrasito conduct
simulations with a Langrangian tracking of the motion ofteaudlividual parti-
cle (Hoomans et al. 1996), where the forces between the fhaigcach particle
are modelled with a drag law.

Recently the latter technique has been combined with DNS/&fEhe fluid
flow. Direct numerical simulation (DNS) solves all turbulescales in the flow,
whereas large-eddy simulation (LES) solves the largeescahd models the
effect of the small scales with a subgrid-model. These tecias are able to
give proper detailed descriptions of the turbulence in amobbflow. LES/DNS
of channel flows with solid particles have been performedigefYamamoto
et al. 2001, Squires and Simonin 2002, Portela et al. 2002chitai et al.
2003), but the total volume fraction of particles in thesel&ts remains rather
small (0.01 percent) and not all of these works include glartollisions and
particle-fluid interactions.

The purpose of this paper is to present LES of a channel flowhictwthe
particle volume concentration is much higher (1.3 per¢eéntprder to study
a case which is closer to industrial applications. The satihs are four-way
coupled, which means that both particle-fluid and partazeticle interactions
(collisions) are included. The discrete particle moduleettgped by Hoomans
et al. (1996) is used, in which the spherical particles hafiaite size and
all (inelastic) collisions are taken into account. The L&f+ations of the gas-
phase are closed with an approximation of the dynamic sddmgadel.

In order to study both the effect of the particle collisiom&ldhe effects of
the particle-fluid interactions we compare the followingeth simulations: (1)
a turbulent channel flow without particles, (2) a turbulehamnel flow with
particles, but without collisions (two-way coupled casejl §3) a turbulent
channel flow with colliding particles (four-way coupled easThe differences
between cases 1 and 2 quantify the effects of the particke-filueractions
and the differences between cases 2 and 3 quantify the efiéthe particle
collisions.

2. The equations for gas-solid channel flow

Description of the gas phase
The Navier-Stokes equations that govern a compressibleifiavporous
medium read:

O(pe) + 0j(peuj) = O, 1)
Or(peu;) + 0j(peujuj) = —0;(ep) + Ojeoij + (peg + €pg)diz + fi, (2)
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Or(ee) + 0;((e + p)euj) = Oj(eoiju;) + (peg + epg)us + fiui —0;(eq; )(3)

where the symbol8; andd; denote the partial differential operatdrsot and
0/0x; respectively.
The coordinaters denotes the streamwise direction of the channel fiow,
is the normal andr; is the spanwise direction. The domain is rectangular
and the channel width, height and depth eghal= 0.05m, L3 = 0.30m
andL; = 0.075m respectively. No-slip boundary conditions are imposed in
thexo-direction and periodic boundary conditions are assumethéostream-
and spanwise directions. Furthermaopas the densitye is the porosityu the
velocity, p the pressure ané = p/(y — 1) + 3pupuip K the total energy per
volume unit. The constant denotes the ratio of specific hedts /Cy = 1.4.
The viscous stress;; is defined as the product of viscosity = 3.47 -
10~°kg/(ms) and strain-rate

Sij(u) = aiuj + ajui - %&ﬂkuk. 4)

The heat-fluxg; is defined as-~x0;7" whereT is the temperature and =
0.035W/(mK) the heat-conductivity coefficient.

Pressure, density and temperature are related to eachbyttiee equation
of state for an ideal gasRT = Myqsp, WhereR = 8.314J/(molK) is the
universal gas constant ard,,, =0.0288kg/mol is the mass of the gas per
mol. The gravitation accelaration equagls= —9.81m/s?, p, is an external
pressure gradient and the symbfpldenotes the force of the particles on the
flow per volume unit.

The equations formulated above are equivalent to the emsagoverning
a compressible ideal gas with velocity temperaturel’, density p¢ = ep,
pressure® = ep, viscosityu© = ex and heat-conductivity© = ex. Therefore
to solve this flow it is convenient to use a standard comgrkssode with an
addition of the forcing terms representing gravitation #malforces from the
particles on the fluid.

We are interested in a section of a riser flow with a verticébeigy of about
4m/s. The parameters of the fluid in the riser are close to thoseaiforThe
initial fluid density equals); =1.0kg/m?. With a normal value of the ini-
tial pressure (arount0® N/m?) the flow has a very low Mach number around
0.01, which is extremely expensive to simulate with a corsgilde solver.
Therefore we use a much lower pressu#0(V/m?) which results in a Mach
number of appromixately 0.2. At this Mach number the turbttannel flow
can still be regarded as incompressible, i.e. a furtheratemtu of the Mach
number does not significantly change the turbulent stegistncluding pres-
sure fluctuations.

The flow is driven by the pressure gradignt which is a function of time
only and its level is such that the total fluid mass flow is canstFor a channel
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flow without particles the value gf, corresponds te,, = 0.0625N/m?, u, =
0.25m/s and Re, = 180.

Description of the solids phase

The discrete particle model is a hard sphere collision motdedalculates
the motion of particles in the fluid and includes the partictdlisions with
a general restitution coefficient of 0.97, a tangentialitg&dn coefficient of
0.33 and friction coefficient of 0.1. The forces on a partitiat are taken into
account are gravitation, pressure and the drag force magudibm the veloc-
ity difference with the surrounding fluid. The Ergun and WerYu drag law
is used, which is precisely described in Hoomans et al. (199®e mean
velocity of the riser is low enough to neglect the heat trandiiring particle
collisions and the heat transfer between particles and. fllitie particle di-
ameter equal.4mm and the particle density equals =1500kg/m3. The
number of particles equal¥, = 419904. With the parameters above the av-
erage volume fraction of the particles equaldl3. The Stokes-response time
equalsD.4s.

Description of the numerical method

The equations for the fluid phase are solved with a secongk-dirtdte vol-
ume method on a collocated grid. The equations are disetetizthe diver-
gence form as described by equations (1-3). The controhwelaf the con-
vective and pressure terms equals eight grid-cells. Clwiitomes of one cell
are used to discretize the derivatives that are requirethéoviscous/subgrid-
fluxes and for the divergences of these fluxes. The integiativer cell-faces
are all performed with the trapezoidal rule.

The grid containgV; x Ny x N3 cells and is only non-uniform in the normal
direction. The simulations presented in the following aeefgrmed on a grid
with Ny = 32 and N, = N3 = 64. The first grid pointze ; = 0.2mm in
the normal direction corresponds wight = 1.5. The porosity parameter
is determined by counting the particles within each cell mfaaxiliary grid,
which is uniform and contain32 x 25 x 64 cells, chosen such that in each
direction the mesh-spacing of this grid is considerablgdathan the particle
diameter (Hoomans et al 1996). Linear interpolation ragicommunicate the
information from grid-nodes to particle positions and viegsa.

The discretization in time is explicit: a second-order Reuk@itta method
for the fluid phase and Euler for the particles. The time stgmks2 - 10755
for the fluid phase antlo—*s for the solids phase. The simulations run until at
leastt = 5s, while statistics are accumulated betweéen 3s andt = 5s.

3. Subgrid-modeling

The equations governing the fluid phase are solved by meadrisfwhich
implies that a 'bar’-filter is applied to the equations (1Bjth filter width A;
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in the x;-direction taken equal to the grid-spacing. The filteredagigns are
similar to equations (1-3), with the difference that in th&-hand side of the
momentum equation a subgrid-stress is includgd,; with

Tij = PEUUj — PEU; el [ Pe. (5)
For a full presentation of the filtered equations for comgitde flow we refer

to Vreman et al. (1995). The dynamic model (Germano et al1)l889 7;; is
based on the Smagorinsky eddy-viscosity

1 1
mij = —CSRAQS(’[L)SZ']'(@), S = (%Sl-jSij)% A = (A1A2A3)3, (6)
whereu; = peu; /pe, a sort of Favre-filter for compressible flows with porosity.
The dynamic procedure employs an extra filter with a largeerfividth A =
2A, and the dynamic coefficient is computed by
< MijLij >
=——“ " 7
¢S = MM, > (7
where< . > denoted an average over the homogeneous directions indhe ch
nel and -
Lij = [peutij] — peu;peu; /e, (8)
M;j = —pe(V5A)?S(peu/pe)Sij(peu/pe) + [peA®S(@) Sy (@)].  (9)

~

The notatior].] indicates that the hat-filter is applied to the expressidawéen
the brackets. The factar5 is related to the choice of top-hat filters and a ratio
of 2 between test-filter and basic filter (Vreman et al. 1997).

Next we simplify the dynamic model in line with the approagitescribed
by Pope (2000, p. 623) and Chester et al. (2001). Thus, irotlssving Taylor
expansions are used to approximate the tensgrand\M;;. In this paper, only
the O(A?) terms are taken into account. For the tenbgrthis results in an
expression similar to the gradient model,

Lij = %RAzakalakﬂj (20)
For the simplification of\/;; we use thatv = w + O(A?), which yields
Mij = —Apel®S(i0) Sy (). (12)

The dynamic coefficient is again obtained with equation (Bhus the sim-
plified procedure forg, with simplified L;; and M;;, does not need explicit
test-filtering. The resulting coefficient essentially dgube dissipation of the
eddy-viscosity model to the dissipation of the gradient etod

The computations presented in this paper have been pedositie this ap-
proximated dynamic model (equations (6-7,10-11)), whecks imuch cheaper
to evaluate than the standard dynamic model. Simulatiotisatiher subgrid-
models are currently performed, for example with the steshdgnamic model
(using equations (8-9)) and with a multiscale subgrid-n@de=man 2003).
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Figure 1.  Dimensional (left) and non-dimensional (right) mean stredse fluid velocity
(u-). Simulation with colliding particles (solid), with non-tiding particles (dashed) and with-
out particles (dotted).

4, Results

Results of the simulations are shown in figures 1-3. A corsparbetween
the case without and the cases with particles in figure 1 shbaisdue to
particle-fluid interactions the boundary layer becomesrtéi (figure 1a) lead-
ing to a higher skin-friction coefficient (figure 1b). We alsbserve impor-
tant effects of the collisions, on the mean fluid velocityfieo(figure 1), but
even more on particle properties (figures 2-3). The meatcfavelocity with
collisions is flatter than without collisions (figure 2a). \&kso observe that
the near-wall particle velocity is positive and does notpdto zero. This is
in agreement with the observation that the mean fluid velqmibfile in the
boundary layer is enhanced by the forces of the particleb®fidid.

Comparison of the cases with and without collisions showas tie colli-
sions cause a less uniform particle concentration, as demaded by figures
2b-3. Anincrease of the particle concentration near thésvibnly observed
for the case that includes collisions (figure 2b). Althougin#icant, the in-
crease remains rather small, which is attributed to the tfeat the particles
are coarse. The near-wall effect was observed to be muahggtran a more
diluted simulation using finer particleg,( = 0.04mm) and a volume con-
centration ofl.3 - 107°. Figure 3a shows that the case with collisions con-
tains relatively dense regions of particles, which are upwansported by the
mean velocity. Without collisions these regions are carsidly smaller and
less dense (figure 3b), and thus it may be concluded that tielpaparticle
interactions play a crucial role in the formation of densgoes of particles.
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Figure 2. Mean streamwise particle velocity.) (left) and mean volume fraction of the
particles(e,) (right). Simulation with colliding particles (solid) andtiv non-colliding particles
(dashed).
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Figure 3. Isosurfacess = 0.03 att = 3s with collisions (left) and without collisions (right).



We conclude therefore that particle-fluid forces and doltis between par-
ticles strongly alter important properties of both phas&sis indicates the
necessity of a full four-way coupled model for detailed dations of such
flows.
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