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Abstract Large-eddy simulations of a vertical turbulent channel flowwith 420,000 solid
particles are performed in order to get insight into fundamental aspects of a riser
flow. The question is addressed whether collisions between particles are impor-
tant for the flow statistics. The turbulent channel flow corresponds to a particle
volume fraction of 0.013 and a mass load ratio of 18, values that are relatively
high compared to recent literature on large-eddy simulation of two-phase flows.
In order to simulate this flow, we present a formulation of theequations for com-
pressible flow in a porous medium including particle forces.These equations are
solved with LES using a Taylor approximation of the dynamic subgrid-model.
The results show that due to particle-fluid interactions theboundary layer be-
comes thinner, leading to a higher skin-friction coefficient. Important effects of
the particle collisions are also observed, on the mean fluid profile, but even more
on particle properties. The collisions cause a less uniformparticle concentration
and considerably flatten the mean solids velocity profile.
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1. Introduction

A vertical turbulent channel flow with solid particles is simulated in order to
model a section of a riser flow. The turbulent riser is often anindustrial envi-
ronment for important chemical processes, for example the catalytic cracking
of oil. Detailed simulations may considerably increase ourunderstanding of
the physical dynamics of riser flows, which is required because the scale-up
of these flows is very complicated. More knowledge about the formation of
clusters of solid particles in these flows may eventually lead to more efficient
industrial processes.
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Vertical gas-solid flows have been studied experimentally (e.g. Kulick et al.
1994; Nieuwland 1995) and with simulations. Simulations can be performed
using a two-fluid model in which the solid phase is modelled asa fluid using
continuous variables (e.g., Nieuwland 1995). This approach is subject to rela-
tively many modelling assumptions. A more accurate approach is to conduct
simulations with a Langrangian tracking of the motion of each individual parti-
cle (Hoomans et al. 1996), where the forces between the fluid and each particle
are modelled with a drag law.

Recently the latter technique has been combined with DNS/LES of the fluid
flow. Direct numerical simulation (DNS) solves all turbulent scales in the flow,
whereas large-eddy simulation (LES) solves the large-scales and models the
effect of the small scales with a subgrid-model. These techniques are able to
give proper detailed descriptions of the turbulence in a channel flow. LES/DNS
of channel flows with solid particles have been performed before (Yamamoto
et al. 2001, Squires and Simonin 2002, Portela et al. 2002, Marchioli et al.
2003), but the total volume fraction of particles in these studies remains rather
small (0.01 percent) and not all of these works include particle collisions and
particle-fluid interactions.

The purpose of this paper is to present LES of a channel flow in which the
particle volume concentration is much higher (1.3 percent), in order to study
a case which is closer to industrial applications. The simulations are four-way
coupled, which means that both particle-fluid and particle-particle interactions
(collisions) are included. The discrete particle module developed by Hoomans
et al. (1996) is used, in which the spherical particles have afinite size and
all (inelastic) collisions are taken into account. The LES-equations of the gas-
phase are closed with an approximation of the dynamic subgrid-model.

In order to study both the effect of the particle collisions and the effects of
the particle-fluid interactions we compare the following three simulations: (1)
a turbulent channel flow without particles, (2) a turbulent channel flow with
particles, but without collisions (two-way coupled case) and (3) a turbulent
channel flow with colliding particles (four-way coupled case). The differences
between cases 1 and 2 quantify the effects of the particle-fluid interactions
and the differences between cases 2 and 3 quantify the effects of the particle
collisions.

2. The equations for gas-solid channel flow

Description of the gas phase
The Navier-Stokes equations that govern a compressible flowin a porous

medium read:

∂t(ρǫ) + ∂j(ρǫuj) = 0, (1)

∂t(ρǫui) + ∂j(ρǫuiuj) = −∂i(ǫp) + ∂jǫσij + (ρǫg + ǫpg)δi3 + fi, (2)
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∂t(ǫe) + ∂j((e + p)ǫuj) = ∂j(ǫσijui) + (ρǫg + ǫpg)u3 +fiui −∂j(ǫqj).(3)

where the symbols∂t and∂j denote the partial differential operators∂/∂t and
∂/∂xj respectively.

The coordinatex3 denotes the streamwise direction of the channel flow,x2

is the normal andx1 is the spanwise direction. The domain is rectangular
and the channel width, height and depth equalL2 = 0.05m, L3 = 0.30m
andL1 = 0.075m respectively. No-slip boundary conditions are imposed in
thex2-direction and periodic boundary conditions are assumed for the stream-
and spanwise directions. Furthermore,ρ is the density,ǫ is the porosity,u the
velocity, p the pressure ande = p/(γ − 1) + 1

2
ρukukK the total energy per

volume unit. The constantγ denotes the ratio of specific heatsCP /CV = 1.4.
The viscous stressσij is defined as the product of viscosityµ = 3.47 ·

10−5kg/(ms) and strain-rate

Sij(u) = ∂iuj + ∂jui −
2

3
δij∂kuk. (4)

The heat-fluxqj is defined as−κ∂jT whereT is the temperature andκ =
0.035W/(mK) the heat-conductivity coefficient.

Pressure, density and temperature are related to each otherby the equation
of state for an ideal gasρRT = Mgasp, whereR = 8.314J/(molK) is the
universal gas constant andMgas =0.0288kg/mol is the mass of the gas per
mol. The gravitation accelaration equalsg = −9.81m/s2, pg is an external
pressure gradient and the symbolfi denotes the force of the particles on the
flow per volume unit.

The equations formulated above are equivalent to the equations governing
a compressible ideal gas with velocityu, temperatureT , densityρc = ǫρ,
pressurepc = ǫp, viscosityµc = ǫµ and heat-conductivityκc = ǫκ. Therefore
to solve this flow it is convenient to use a standard compressible code with an
addition of the forcing terms representing gravitation andthe forces from the
particles on the fluid.

We are interested in a section of a riser flow with a vertical velocity of about
4m/s. The parameters of the fluid in the riser are close to those forair. The
initial fluid density equalsρ1 =1.0kg/m3. With a normal value of the ini-
tial pressure (around105N/m2) the flow has a very low Mach number around
0.01, which is extremely expensive to simulate with a compressible solver.
Therefore we use a much lower pressure (340N/m2) which results in a Mach
number of appromixately 0.2. At this Mach number the turbulent channel flow
can still be regarded as incompressible, i.e. a further reduction of the Mach
number does not significantly change the turbulent statistics, including pres-
sure fluctuations.

The flow is driven by the pressure gradientpg, which is a function of time
only and its level is such that the total fluid mass flow is constant. For a channel
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flow without particles the value ofpg corresponds toτw = 0.0625N/m2 , uτ =
0.25m/s andReτ = 180.

Description of the solids phase
The discrete particle model is a hard sphere collision model. It calculates

the motion of particles in the fluid and includes the particlecollisions with
a general restitution coefficient of 0.97, a tangential restitution coefficient of
0.33 and friction coefficient of 0.1. The forces on a particlethat are taken into
account are gravitation, pressure and the drag force resulting from the veloc-
ity difference with the surrounding fluid. The Ergun and Wen& Yu drag law
is used, which is precisely described in Hoomans et al. (1996). The mean
velocity of the riser is low enough to neglect the heat transfer during particle
collisions and the heat transfer between particles and fluid. The particle di-
ameter equals0.4mm and the particle density equalsρ2 =1500kg/m3. The
number of particles equalsNp = 419904. With the parameters above the av-
erage volume fraction of the particles equals0.013. The Stokes-response time
equals0.4s.

Description of the numerical method
The equations for the fluid phase are solved with a second-order finite vol-

ume method on a collocated grid. The equations are discretized in the diver-
gence form as described by equations (1-3). The control volume of the con-
vective and pressure terms equals eight grid-cells. Control volumes of one cell
are used to discretize the derivatives that are required forthe viscous/subgrid-
fluxes and for the divergences of these fluxes. The integrations over cell-faces
are all performed with the trapezoidal rule.

The grid containsN1×N2×N3 cells and is only non-uniform in the normal
direction. The simulations presented in the following are performed on a grid
with N1 = 32 andN2 = N3 = 64. The first grid pointx2,1 = 0.2mm in
the normal direction corresponds withy+ = 1.5. The porosity parameterǫ
is determined by counting the particles within each cell of an auxiliary grid,
which is uniform and contains32 × 25 × 64 cells, chosen such that in each
direction the mesh-spacing of this grid is considerably larger than the particle
diameter (Hoomans et al 1996). Linear interpolation routines communicate the
information from grid-nodes to particle positions and vice-versa.

The discretization in time is explicit: a second-order Runge-Kutta method
for the fluid phase and Euler for the particles. The time step equals2 · 10−5s
for the fluid phase and10−4s for the solids phase. The simulations run until at
leastt = 5s, while statistics are accumulated betweent = 3s andt = 5s.

3. Subgrid-modeling

The equations governing the fluid phase are solved by means ofLES, which
implies that a ’bar’-filter is applied to the equations (1-3), with filter width ∆i
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in thexi-direction taken equal to the grid-spacing. The filtered equations are
similar to equations (1-3), with the difference that in the left-hand side of the
momentum equation a subgrid-stress is included,∂jτij with

τij = ρǫuiuj − ρǫuiρǫuj/ρǫ. (5)

For a full presentation of the filtered equations for compressible flow we refer
to Vreman et al. (1995). The dynamic model (Germano et al. 1991) for τij is
based on the Smagorinsky eddy-viscosity

mij = −cSρǫ∆2S(ũ)Sij(ũ), S = (1

2
SijSij)

1

2 , ∆ = (∆1∆2∆3)
1

3 , (6)

whereũi = ρǫuj/ρǫ, a sort of Favre-filter for compressible flows with porosity.
The dynamic procedure employs an extra filter with a larger filter width∆̂ =
2∆, and the dynamic coefficientcS is computed by

cS =
< MijLij >

< MijMij >
, (7)

where< . > denoted an average over the homogeneous directions in the chan-
nel and

Lij = [ρǫũiũj]
̂− ρ̂ǫuiρ̂ǫuj/ρ̂ǫ, (8)

Mij = −ρ̂ǫ(
√

5∆)2S(ρ̂ǫu/ρ̂ǫ)Sij(ρ̂ǫu/ρ̂ǫ) + [ρǫ∆2S(ũ)Sij(ũ)]̂. (9)

The notation[.]̂indicates that the hat-filter is applied to the expression between
the brackets. The factor

√
5 is related to the choice of top-hat filters and a ratio

of 2 between test-filter and basic filter (Vreman et al. 1997).
Next we simplify the dynamic model in line with the approaches described

by Pope (2000, p. 623) and Chester et al. (2001). Thus, in the following Taylor
expansions are used to approximate the tensorsLij andMij. In this paper, only
theO(∆2) terms are taken into account. For the tensorLij this results in an
expression similar to the gradient model,

Lij = 1

3
ρǫ∆2

k∂kũi∂kũj . (10)

For the simplification ofMij we use that̂w = w̄ + O(∆2), which yields

Mij = −4ρǫ∆2S(ũ)Sij(ũ). (11)

The dynamic coefficient is again obtained with equation (8).Thus the sim-
plified procedure forcS , with simplifiedLij andMij , does not need explicit
test-filtering. The resulting coefficient essentially equals the dissipation of the
eddy-viscosity model to the dissipation of the gradient model.

The computations presented in this paper have been performed with this ap-
proximated dynamic model (equations (6-7,10-11)), which is is much cheaper
to evaluate than the standard dynamic model. Simulations with other subgrid-
models are currently performed, for example with the standard dynamic model
(using equations (8-9)) and with a multiscale subgrid-model (Vreman 2003).
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Figure 1. Dimensional (left) and non-dimensional (right) mean streamwise fluid velocity
〈uz〉. Simulation with colliding particles (solid), with non-colliding particles (dashed) and with-
out particles (dotted).

4. Results

Results of the simulations are shown in figures 1-3. A comparison between
the case without and the cases with particles in figure 1 showsthat due to
particle-fluid interactions the boundary layer becomes thinner (figure 1a) lead-
ing to a higher skin-friction coefficient (figure 1b). We alsoobserve impor-
tant effects of the collisions, on the mean fluid velocity profile (figure 1), but
even more on particle properties (figures 2-3). The mean particle velocity with
collisions is flatter than without collisions (figure 2a). Wealso observe that
the near-wall particle velocity is positive and does not drop to zero. This is
in agreement with the observation that the mean fluid velocity profile in the
boundary layer is enhanced by the forces of the particles on the fluid.

Comparison of the cases with and without collisions shows that the colli-
sions cause a less uniform particle concentration, as demonstrated by figures
2b-3. An increase of the particle concentration near the walls is only observed
for the case that includes collisions (figure 2b). Although significant, the in-
crease remains rather small, which is attributed to the factthat the particles
are coarse. The near-wall effect was observed to be much stronger in a more
diluted simulation using finer particles (dp = 0.04mm) and a volume con-
centration of1.3 · 10−5. Figure 3a shows that the case with collisions con-
tains relatively dense regions of particles, which are upward transported by the
mean velocity. Without collisions these regions are considerably smaller and
less dense (figure 3b), and thus it may be concluded that the particle-particle
interactions play a crucial role in the formation of dense regions of particles.
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Figure 2. Mean streamwise particle velocity〈vz〉 (left) and mean volume fraction of the
particles〈ǫs〉 (right). Simulation with colliding particles (solid) and with non-colliding particles
(dashed).

Figure 3. Isosurfacesǫs = 0.03 at t = 3s with collisions (left) and without collisions (right).
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We conclude therefore that particle-fluid forces and collisions between par-
ticles strongly alter important properties of both phases.This indicates the
necessity of a full four-way coupled model for detailed simulations of such
flows.
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