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1 Introduction

Two recent papers on large-eddy simulation of complex flows will be revis-
ited and extended: a paper presenting a simply implementable subgrid model
that is able to deal with transition and near-wall behavior [1], and a paper
introducing the notion of adjoint filtering, which is required to ensure that the
basic conservation properties of the Navier-Stokes equations are not violated
after general nonuniform filtering [2]. Section 2 extends the model proposed
in [1] to account for compressibility effects and presents advanced simulation
results for turbulent supersonic mixing layers. Section 3 shows new adjoint
modeling predictions for subgrid backscatter in turbulent channel flow.

2 Engineering subgrid model applied to supersonic flow

Ref. [1] presented an eddy-viscosity model which is essentially not more com-
plicated than the Smagorinsky subgrid model. Unlike the Smagorinsky model,
the proposed model is applicable to transitional flow and vanishes near walls.
The model is expressed in first-order derivatives only and, in contrast to the
well-known and successful dynamic model [3], it does not involve explicit
filtering, ensemble averaging or clipping procedures. The foundation of the
model relies on an algebraic classification of all three-dimensional flows. The
construction of the model is such that the model and the theoretical sub-
grid dissipation vanish for the same classes of incompressible flows. In [1] the
model was tested for a subsonic transitional mixing layer at high Reynolds
number and for plane channel flow. In both cases the model outperformed the
Smagorinsky model and was found to be as accurate as the computationally
more demanding dynamic model. The range of flows tested for the new model
is extended in this section.

LES with an eddy-viscosity closure solves the filtered Navier-Stokes equa-
tions, in which the unknown turbulent stress tensor, 7;; = uW;u; — U;u;, has
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been replaced by the model —2v,.5;;, where S;; = %&ﬂj—i-%ajm. The following
eddy-viscosity is considered in this section:

Ve = ey Z[(ijauj), (1)

with model constant ¢ = 2.5C%, where Cg is the Smagorinsky constant, and

_ Ju,;
Q5 = @:Uj = 8—:;1" (2)
ﬂij = A?namiamj; (3)

Z = B11B22 — By + B11B33 — Bis + Paafsz — B35 + (ccAdiva)* /2, (4)

where ¢, is a constant and A3 = A; Ay As. The last term in Z is a compress-
ibility correction. Originally the model was derived for incompressible flow
and for incompressible flow the correction vanishes. Without compressibility
correction, the model is zero for one-dimensional flow and, consequently, it
does not dissipate one-dimensional shocks. This problem is cured by the com-
pressible extension. For one-dimensional flow the compressible eddy-viscosity
reduces to a Smagorinsky viscosity with Smagorinsky constant c.. For the
following supersonic application ¢ = 0.07 and ¢, = 0.1 was used.

Like the Smagorinsky model, the new model is well-suited for engineering
applications, since it does not need more than the local filter width and the
first-order derivatives of the velocity field. The symbol a represents the 3 x 3-
matrix of derivatives of the filtered velocity @. If ayjou; equals zero, v is
consistently defined as zero. The tensor  is proportional to the anisotropic
gradient model and positive semidefinite, which implies Z > 0.

The WALE model [4], which was constructed to correctly reproduce near-
wall behavior, is also simply to implement in complex flows. That model is
based on the square of the velocity gradient matrix (a?), which is funda-
mentally different from a”a. Model (1) is based on a®«, which is directly
related to the formal definition of the turbulent stress tensor, through Taylor
expansion.

Using model (1) we found an interesting result for the temporal mixing
layer at convective Mach number M, = 2.0, a flow which according to the
knowledge of the author has never been simulated before. Initial Reynolds
number (10°) and other parameters are as in [1], where M. = 0.28. Fig. 1
includes the momentum thickness for three supersonic cases: the dynamic
model, the Smagorinsky model and model (1). For each case central differ-
encing was used. The dynamic model quickly broke down due to numerical
instability, whereas the mixing layer did not become turbulent at all when the
Smagorinsky model was used, although Cs was low. However, the simulation
with model (1) showed transition to turbulence, while it remained stable.

It is remarked that the Smagorinsky model was evaluated for Cs = 0.1
and A = h, where h equalled the grid-spacing. Model (1) was evaluated for
¢ =0.07 and A = 2h instead of A = h, for stability reasons in this demanding
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Fig. 1. LEFT: Evolution of momentum thickness in supersonic mixing layer at M. =
2.0 for three subgrid models: Equation (1) (solid), Smagorinsky model (dashed),
dynamic model (squares). The reference curve at M. = 0.28 [1] is also shown (thick
curve). RIGHT: subgrid dissipation of adjoint filtered model, Eq. (5), in LES of
channel flow (solid), decomposed into forward scatter ("+’) and backscatter (dashed).

supersonic high-Reynolds number flow. The dynamic model was evaluated for
A = 2h as well, but this could not cure its stability problem.

The compressible growth-rate reduction simulated by model (1) is some-
what less than the reduction known from experiments. The turbulent growth-
rate &', determined as the slope of the momentum thickness and directly re-
lated to the integrated turbulent production [5], is about 0.043 for M. = 0.28
[1] and 0.014 for M, = 2.0. Thus, the reduction of the simulated growth-rate
at M. = 2.0, is about 70% of the low Mach number value. In an experiment
at comparable Mach number (M, = 1.9) the measured growth-rate was 78%
reduced, compared to the incompressible measurement [6].

Finally, model (1) was tested in two-phase channel flow with high par-
ticle volume fraction and the results were found to be at least as accurate
and as those documented in literature for the computationally more expen-
sive dynamic model [7]. In conclusion, model (1) has been tested for a wide
range of flows and in each case the results were quite good, compared to both
Smagorinsky and dynamic model.

3 Nonuniform adjoint filters and backscatter

In practical applications, it is often desirable to use a filter width that de-
pends on the spatial location. It is well-known that nonuniform filters do not
commute with the spatial derivatives in the filtered equations. Due to the
commutation problem, the filtered equations are in general not local conser-
vation laws [2]. In particular the nonuniformly filtered velocity has lost the
incompressible divergence-free property. With the notion of an adjoint filter-
ing technique the violation of conservation properties can be restored in a
global sense [2]. In addition such a filter can be applied to include backscatter
into a subgrid model, while the globally dissipative behavior remains ensured,



4 A.W. Vreman

analytically. We illustrate this for the Smagorinsky model, but we could have
used another eddy-viscosity equally well, for example the one presented in the
previous section.

The adjoint-filtered Smagorinsky model reads [2]

Tij = _FQ(QC.%A2|S|5U)7 (5)

where s;; = FSy, |s|> = 25458y and F' =1 -G, F* =1 —-G* G is an
arbitrary explicit filter operator and G® its adjoint. The definition of the
adjoint operator partial integration proves that the total dissipation of the
latter model is positive for arbitrary G. Nevertheless, the model is able to
predict backscatter (locally negative regions of —7;;5;;). Model (5) is related
to the variational multiscale approach [8] with two main differences. Firstly,
the latter approach defines the large scales with use of a projection operator,
which can always be written as a kernel filter [2]. Another difference with [8]
is that in equation (5) the ’small-scale extraction’ operator F' is applied to the
strain-rate and not to the velocity. Only in this way nonuniform filtering does
not prohibit a tensorial form of the model. The tensorial form is necessary to
use the standard expression for the definition of backscatter [9].

The turbulent channel LES configuration described in [1] was used to test
model (5) for a three-points self-adjoint filter G (equation (52) in Ref. [2]
was implemented for y = 3) with satisfactory results. Fig. 1 (right) clearly
shows that the model predicts backscatter near the wall. The total amount of

backscatter is about —13% of the entire subgrid dissipation.
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